Graded Modalities. I*

Abstract. We study a modal system \mathcal{T}, that extends the classical (propositional) modal system T and whose language is provided with modal operators $M_n (n \in \mathbb{N})$ to be interpreted, in the usual kripkean semantics, as "there are more than n accessible worlds such that...". We find reasonable axioms for \mathcal{T} and we prove for it completeness, compactness and decidability theorems.

1. Introduction

We study a modal system \mathcal{T}, that extends the classical (propositional) modal system T (see e.g. [6]) and whose language is provided with modal operators $M_n (n \in \mathbb{N})$ to be interpreted, in the usual kripkean semantics, as "there are more than n accessible worlds such that...". From this point of view, it is obvious that M_0 has the same interpretation that the classical possibility operator has. We find reasonable axioms for \mathcal{T} and we prove for it completeness (via satisfiability), compactness and decidability theorems.

Of course, the graded modalities M_n (with their dual ones, L_n) can be inserted in every modal system with a kripkean semantics: we present here the case of \mathcal{T}, extension of T, just as an example of a trend that can be followed for other classical systems, like K, B, $S4$, $S5$, etc., so to generate the corresponding extensions \mathcal{K}, \mathcal{B}, $\mathcal{S4}$, $\mathcal{S5}$, etc.

We observe also that the idea of grading the classical modalities M and L is not entirely new in itself: Goble [5] introduces grades for modal operators, but in an entirely different conceptual framework and with different technical features.

2. The syntax of \mathcal{T}

The language of \mathcal{T} consists of:

a) a denumerable set of basic propositional symbols, $\mathcal{P} = \{p, q, r, \ldots\}$, with or without indexes from \mathbb{N} (the set of natural numbers);

b) the propositional connectives \neg and \vee;

c) the modal operators $M_n (n \in \mathbb{N})$;

d) a finite set of parentheses.

* The authors are very indebted to the referee for his consideration and appreciation of their work.
The set of (well-formed) formulas of \mathcal{T}, (\mathcal{S}), is defined as usual except for allowing such formulas as $M_n\alpha$ if α is a formula. Formulas will be denoted by small Greek letters, with or without indexes. We shall write $\lor\{a_i: \ldots i \ldots \}$, where $\ldots i \ldots$ is some condition on i, to indicate a finite but long disjunction, and similarly for conjunctions.

We adopt the usual convention to introduce the remaining propositional connectives as abbreviations of formulas built only by \rightarrow and \lor, as well as the following modalities:

- **A1)** classical propositional tautologies
- **A2)** $a \rightarrow M_0\alpha$
- **A3)** $M_{n+1}\alpha \rightarrow M_n\alpha$ (n $\in N$)
- **A4)** $L_0(a \rightarrow \beta) \rightarrow (M_n\alpha \rightarrow M_n\beta)$ (n $\in N$)
- **A5)** $M^*_0(a \land \beta) \rightarrow ((M^*_n\alpha \land M^*_n\beta) \rightarrow M^*_{n+m}(a \lor \beta))$ (n, m $\in N$).

The **rules of inference** of \mathcal{T} are:

- **(MP)** From $\alpha, \alpha \rightarrow \beta$ derive β
- **(N)** From α derive $L_0\alpha$.

The notions of a formal deduction and of a theorem are defined in usual way: $\vdash \alpha$ means "α is a theorem (of \mathcal{T})".

Theorem 1. a) If $\vdash \alpha \rightarrow \beta$ then $\vdash M_n\alpha \rightarrow M_n\beta$ (n $\in N$).

b) If $\vdash \alpha \leftrightarrow \beta$ then $\vdash M_n\alpha \leftrightarrow M_n\beta$ (n $\in N$).

c) If $\alpha, \beta \in (\mathcal{S})$ and β differs from α for having a formula δ in some (not necessarily all) places in which a formula γ occurs in α, and $\vdash \gamma \leftrightarrow \delta$, then $\vdash \alpha \leftrightarrow \beta$.

Proof. a) and b) are proved by easy verifications; c) is proved by a simple induction on complexity of formulas, using tautologies and b).

Theorem 1 allows the introduction of some derived rules of inference for \mathcal{T}:

- **(DR1)** From $\alpha \rightarrow \beta$ derive $M_n\alpha \rightarrow M_n\beta$ (n $\in N$)
- **(DR2)** From $\alpha \leftrightarrow \beta$ derive $M_n\alpha \leftrightarrow M_n\beta$ (n $\in N$)
- **(Eq)** The usual rule of substitution of equivalent formulas (see e.g. [6]).