Maximizing a Correlational Ratio for Linear Extensions of Posets

P. C. FISHBURN
AT & T Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

Communicated by P. Hell

(Received: 9 July 1985; accepted: 20 March 1986)

Abstract. Let \(\rho = P(12)/P(12|13) \), where \(P(ij) \) is the probability that \(i \) precedes \(j \) in a randomly chosen linear extension of a partially ordered set \((\{1, 2, \ldots, n\}, \leq) \) in which points 1, 2 and 3 are mutually incomparable. A previous paper by the author (Order 1, 127 (1984)) proved that \(\rho < 1 \). The present paper considers the maximization of \(\rho \) for each \(n > 3 \). It shows that, with \(\alpha_n = \lfloor (n+3)/2 \rfloor \), the maximum \(\rho \) is at least

\[
\left[\frac{\alpha_n n}{\alpha_n n} - n \right] / \left[\frac{\alpha_n n}{\alpha_n n} - \alpha_n \right].
\]

Evidence that this value cannot be exceeded is given. It is also proved that the smallest possible value of \(P(231) + P(321) \) is

\[
\frac{1}{\lfloor (n+1)/2 \rfloor}.
\]

Key words. Partial order, linear extension, correlation.

1. Introduction

Throughout, \(n > 3 \), \(n = \{1, 2, \ldots, n\} \), \(\leq \) is an asymmetric and transitive binary relation on \(n \), and \(i \sim j \) if neither \(i < j \) nor \(j < i \). The largest integer not exceeding \(x \) is \(\lfloor x \rfloor \).

Let \(\mathcal{R}_n \) be the family of posets \((n, \leq) \) for which \(1 \sim 2 \sim 3 \sim 1 \). Also let \(P(ij) \) denote the probability that \(i \) precedes \(j \) in a randomly chosen linear extension of a given poset in \(\mathcal{R}_n \), so \(P(ij) = 1 \Leftrightarrow i < j \). By [1], \(P(12) < P(12|13) \), the strict version of what has been called the \(xyz \) inequality [3]. Following a suggestion of Rival [2], we consider

\[
\rho_n = \max_{\mathcal{R}_n} \frac{P(12)}{P(12|13)}
\]
Lacking an exact solution for ρ_n, we derive fairly tight bounds on this maximum correlational ratio and suggest that the lower bound might actually be the exact solution.

*Given a poset in \mathcal{P}_n, let $\rho = P(12)/P(12\mid 13)$, let N be the number of linear extensions of the poset, and let $N(i_1, i_2, \ldots, i_k)$ be the number of these N in which i_1 precedes i_2 ... precedes i_k. Our approach to ρ_n is based on the fact that $\rho = 1 - (1 - \lambda)/K_0$, where

$$
\lambda = \frac{N(213)N(312)}{[N(123)+N(132)][N(231)+N(321)]}
$$

and

$$
K_0 = \frac{N}{N(231)+N(321)}.
$$

The maximum value of λ of $(n-1)^2/(n+1)^2$ for odd n and $(n-2)/(n+2)$ for even n was established in [1]. We prove here that the maximum value of K_0 is $\frac{\lfloor n+1/2 \rfloor}{\lfloor n+1/2 \rfloor}$. Our upper bound on ρ_n is simply obtained by inserting these maxima in the preceding expression for ρ.

The upper bound gives the exact value of ρ_n for $n \in \{3, 4\}$ since the poset configurations that maximize λ and K_0 coincide for these n. However, this is not true for $n \geq 5$. Our lower bound on ρ_n for these cases is based on the fact that $1/K_0$ tends to be much smaller than $1 - \lambda$ for values near the maxima. We therefore focus on posets that tend to maximize K_0 in deriving a good lower bound.

The next section presents our main results and some numerical calculations. Configurations that maximize K_0 are established in the third section. The final section offers subsidiary results which suggest that ρ_n might in fact equal our lower bound.

2. Main Results

Theorem 1. For each $n \geq 3$,

$$
K_0 \leq \left\lfloor \frac{n+1}{2} \right\rfloor
$$

for all posets in \mathcal{P}_n, with equality holding if and only if the poset satisfies the restrictions of Figure 1.

Theorem 1 is proved in the next section.

On Figure 1, $a \sim b$ whenever $a \in A \cup \{1\}$ and $b \in B \cup \{2, 3\}$. The $<$ arrangement of points within A and within B does not affect K_0. Indeed, if $(A \cup \{1\}, <)$ has N_1 linear extensions (1 always at the bottom, or leftmost) and $(B \cup \{2, 3\}, <)$ has N_2