CONSTRUCTION OF TWISTED PRODUCTS FOR COTANGENT BUNDLES OF CLASSICAL GROUPS AND STIEFEL MANIFOLDS

ANDRÉ LICHNEROWICZ
Physique Mathématique, Collège de France, Paris, France

ABSTRACT. The existence of invariant twisted products (deformations of the associative algebra of \(C^\infty \)-functions) on the cotangent bundles of classical groups and Stiefel manifolds is proved by explicit constructions. All these products are positive.

On a symplectic manifold \(W \), we can define Classical Mechanics by means of two algebraic structures defined on the vector space \(N = C^\infty (W; R) \)

1. a structure of associative algebra defined by the usual product of functions.
2. a structure of Lie algebra defined by the Poisson bracket \(\mathcal{P} \).

We have shown ([1], [2]) that it is reasonable to study if we can obtain by suitable deformations of these two structures a model isomorphic to the Quantum Mechanics. An important theorem of J. Vey [5] proves the existence of suitable deformations of the Poisson Lie algebra. The general problem of the existence of suitable associative (non commutative) deformations of the associative algebra \(N \) (or \(\ast \)-products for \(N \)) appears as much more difficult. Some procedures for defining such deformations has been given [1] in the context of the coadjoint representations of Lie algebras.

We prove here the existence of good invariant \(\ast \)-products for the symplectic manifolds defined by the cotangent bundles of classical groups and Stiefel manifolds. A study concerning the Grassmann manifolds is given.

For the construction, we use for one part procedures of quotient and product, and for another part invariant 'pseudo-metrics'.

1. NOTION OF \(\ast \)-PRODUCT

The definitions and notations are those of [1]. In particular \(Q^r \) is a bidifferential operator on \(N \) of maximum order \(r \) \((r > 1)\) in each argument, null on the constants, such that the principal symbol of \(Q^r \) coincides with the principal symbol of \(\mathcal{P} \) (for an arbitrary symplectic connection \(\Gamma \)). We take \(Q^0 (u, v) = uv, Q^1 (u, v) = \mathcal{P}(u, v) \). We suppose that \(Q^r \) is symmetric in \((u, v)\) if \(r \) is even, skewsymmetric if \(r \) is odd (condition of symmetry).

DEFINITION A. \(\ast \)-product for the symplectic manifold \((W, \Lambda)\) is defined by a bilinear map:

\[
N \times N \rightarrow E(N; \ast ; v)
\]

given by:

\[
Q^r (u, v) = \mathcal{P}(u, v)
\]

Letters in Mathematical Physics 2 (1977) 133-143. All Rights Reserved.
\[u \ast v = \sum_{r=0}^{\infty} (v' / r') \, Q^r(u, v) \quad (u, v \in N). \quad (1.1) \]

and satisfying the associativity relation which can be translated by:

\[
\sum_{r+s=t} (1/r! s!) \, Q^r(u, v), w) = \sum_{r+s=t} (1/r! s!) \, Q^r(u, Q^s(v, w))
\]

\[(r, s \geq 0; t = 1, 2, ...). \quad (1.2) \]

2. TWISTED PRODUCT AND PRODUCT OF SYMPLECTIC MANIFOLDS

(a) Choose on the symplectic manifold \((W, \Lambda)\) a symplectic connection \(\Gamma\); \(Q^r\) can be written on the domain \(U\) of a chart \(\{x^I\}\):

\[Q^r(u, v)_{\{x^I\}} = \sum_I A^I_{(t)} \, \nabla_{t_1} \ldots \nabla_{t_r} u \, \nabla_{i_1} \ldots i_{t'} I \, v \quad (t, t' \leq r), \]

where the coefficients \(A^I_{(t)}\) are symmetric with respect to the \(i\)'s, symmetric with respect to the \(j\)'s and define a tensor \(A_{(t)}\). We associate to \(Q^r\) the polynomial.

\[\Pi^r(\xi, \eta) = \sum_I A^I_{(t)} \, \xi_{i_1} \ldots i_{t'} I \, \eta_{j_1} \ldots j_{t''} I. \quad (2.1) \]

(b) Consider two symplectic manifolds \((W_1, \Lambda_1), (W_2, \Lambda_2)\) and the product manifolds \((W_1 \times W_2, \Lambda_1 + \Lambda_2) = (W, \Lambda)\). Introduce auxiliary symplectic connections \(\Gamma_1\) and \(\Gamma_2\) on the factors; we obtain a symplectic connection on \((W, \Lambda)\). Suppose that \((W_1, \Lambda_1)\) (resp. \((W_2, \Lambda_2)\)) admits a \(\ast^1\)-product (resp. a \(\ast^2\)-product) corresponding to the bidifferential operators \(Q^r\) (resp. \(Q^s\)) on \(N(W_1) = N_1\) (resp. \(N(W_2) = N_2\)).

If \(\{x^\alpha\}\) (resp. \(\{x^\lambda\}\)) is a chart of \((W_1, \Lambda_1)\) of domain \(U_1\) (resp. \((W_2, \Lambda_2)\) of domain \(U_2\)) we have with evident notations:

\[\Pi^1_1(\xi_1, \eta_1) = \sum_I A^I_{(t)} \, \xi_{\alpha_1} \ldots \alpha_{t'} I \, \eta_{\beta_1} \ldots \beta_{t''} I \]

and

\[\Pi^2_2(\xi_2, \eta_2) = \sum_J B^J_{(t)} \, \xi_{\lambda_1} \ldots \lambda_{t'} J \, \eta_{\mu_1} \ldots \mu_{t''} J. \]

We obtain, by product of these polynomials, a polynomial defining on \(N(W) = N\) a bidifferential operator denoted by \(Q^r_1 Q^s_2\).

We set on \(N\):

\[u \ast v = \sum_{r=0}^{\infty} (v' / r!) \, Q^r(u, v) \quad (u, v \in N), \]