WAVE OPERATORS FOR THE SCHRODINGER EQUATION WITH STRONGLY SINGULAR SHORT-RANGE POTENTIALS

YU. A. SEMENOV
Dept. of Mathematics, Kiev Polytechnic Institute, Kiev 252056, U.S.S.R.

ABSTRACT. We use a semigroup positivity preserving to prove asymptotic completeness of the wave operators in many cases when they exist.

1. INTRODUCTION AND BASIC RESULTS

The potential scattering theory for Schrödinger operators \(H = H_0 + q \) where \(H_0 = -\Delta \) and \(q \) is a multiplication by function \(q(x) : \mathbb{R}^l \to \mathbb{R}^l \) acting in \(\mathcal{H} = L^2(\mathbb{R}^l) \) has been developed into very satisfactory manner in the last decade. In 1967 Kupsch and Sandhas [1] have shown the wave operators

\[
\Omega_\pm(H, H_0) = \lim_{t \to \pm \infty} e^{itH} e^{-itH_0}
\]

to exist for the large class of short-range interactions. Thus the following conclusions have been derived

\[
R(\Omega_\pm) \subset \mathcal{H}_{ac}(H) \subset \mathcal{H}_p(H)^\perp \subset R(E_H((0, \infty))).
\]

Here \(R(A) \) denotes the range of an operator \(A \), \(\mathcal{H}_p(H) \) is the subspace of \(\mathcal{H} \) generated by all the eigenvectors of \(H \), \(\mathcal{H}_{ac}(H) \) is the subspace of absolute continuity of \(H \) and \(E_H((a, b)) \) is the spectral projector for \(H \) corresponding to the set \((a, b) \subset \mathbb{R}^l \).

The simplest problem of scattering theory is in proving the equality

\[
R(\Omega_\pm) = \mathcal{H}_{ac}(H).
\]

We shall denote this type of asymptotic completeness of wave operators by (KC). Most general results about (KC) have been obtained by Kato and Kuroda [2, 3] and Simon [4]. The main tool of their method is the theorem of Birman [5]. Another approach has been developed by Lavine [6, 7], who used Kato's theory of smooth operators and Putnam's commutator method. Lavine's results have been extended recently by Robinson [8] who considered positive decreasing potentials with an arbitrary singularity at the origin (see also Semenov [9]).

It is the aim of the present note to prove (KC) for potentials of the form \(W + V \), where \(W \) is
more or less a standard potential, i.e. for \(l = 3 \) \(W(x) \in \mathcal{A} \), the Rollnik class [4] and for \(l > 4 \) \(W(x) \in (L^2 \cap L^p)(\mathbb{R}^l), p > l/2 \) and \(V \) is a positive strongly singular potential: \(V(x) \in L_{loc}^{2\alpha}(\mathbb{R}^l) \), where \(S \) is an arbitrary closed bounded set of Lebesgue measure zero.

The method to prove our result is very simple and consists in the following. First we prove that for any \(\alpha > 0 \) \(e^{-tH_0} - e^{-t(H_0 + V)} \) belongs to trace class. To do this we apply some results about generalized convergence of operators \(H_0 + V_n \), where \(\{V_n\} \) is some suitable approximation of \(V \) and use one comparing feature in the theory of parabolic equations.

Then we establish (KC) for \(\Omega_\alpha(H_0 + V, H_0) \) appealing to the invariance principle:
\[
\Omega_\alpha(e^{-(H_0 + V)}, e^{-H_0}) = \Omega_\alpha(H_0 + V, H_0)
\]
and the theorem of Birman [5].

The next step consists in proving the existence and (KC) for \(\chi^2_\alpha(H_0 + W + V, H_0 + V) \). This requires some quadratic estimates of the type \(||W(H_0 + V + \lambda)^{-1}|| \leq ||W(H_0 + \lambda)^{-1}|| \) and familiar trace arguments. The result now will follow from the chain rule for wave operators.

Our main result is

THEOREM. Let \(\mathcal{H} = L^2(\mathbb{R}^l), l \geq 3 \). Let \(q = W + V \). Suppose that

1. \(0 \leq V(x) \in L_{loc}^{2\alpha}(\mathbb{R}^l) \), supp \(V(x) \subset K(R) \), where \(S \) is a closed set of measure zero and \(K(R) = \{x \in \mathbb{R}^l; |x| \leq R \} \) for some fixed \(R > 0 \).

2. For \(l = 3 \) \(W(x) \in \mathcal{A} \), the Rollnik class and for \(l > 4 \) \(W(x) \in (L^2 \cap L^p)(\mathbb{R}^l) \) for some \(p > l/2 \). Let \(H = H_0 + q \) be the form sum. Then \(\chi^2(H_0 + V, H_0 + V) \) exist and are (KC).

Remark. The condition ‘supp \(V(x) \subset K(R) \)’ in the theorem may be replaced, for instance, by the condition \(V(x) = O(|x|^{-2+\epsilon}) \) for \(l = 3 \) and \(V(x) = O(|x|^{-l/2}) \) for \(l > 4 \) if \(|x| \to \infty \) in which case \(V \) can be decomposed as the sum \(V_c + V_w \) where \(V_c \) has a compact support and \(V_w \) satisfies Condition 2).

2. **PROOF OF THE THEOREM**

Let \(V_n \) be the corresponding truncated operators of \(V \), i.e. \(V_n = V \) if \(V \leq n \), \(V_n = n \) if \(V > n \).

LEMMA 1. Let \(\mathcal{H} = L^2(\mathbb{R}^l), l \geq 1 \). Let \(0 \leq V(x) \in L_{loc}^{1\alpha}(\mathbb{R}^l) \), where \(S \) is an arbitrary closed set of measure zero. Let \(H_n = H_0 + V_n \). Then for every \(\alpha > 0 \), \(s \lim_{n \to \infty} e^{-tH_n} = e^{-tH_0} \), where \(H_\alpha = H_0 + V \) denotes the form sum.

Proof. A detailed proof of the lemma can be found in [10].

Let \(V(0)(x) : \mathbb{R}^l \to \mathbb{R}^1 \) be a nonnegative function which vanishes outside of \(K(2R) \) and is infinity on \(K(R) \). The function \(V(0)(x) \) will be called a comparable potential if and only if \(V_n(0)(x) \) is locally Holder continuous function on \(\mathbb{R}^l \) for each \(n = 0, 1, 2, ... \).

Let \(V(0) \) be a comparable potential. Let \(H(0)_n = H_0 + V_n(0) \). Then by an argument based on monotony of the sequence \(\{H(0)_n\} \) it is easy to see that for any \(\alpha > 0 \), \(s \lim_{n \to \infty} e^{-tH(0)_n} \) exist and uniquely defines the semigroup \(P^t \) of bounded self-adjoint operators acting in \(\mathcal{H} \).

LEMMA 2. Let \(\mathcal{H} = L^2(\mathbb{R}^l), l \geq 1 \). Let \(V(0) \) be a comparable potential and let \(K(0)(x, y, t) \) and \(K(0)(x, y, t) \) are the integral kernels of \(e^{-tH_0} \) and \(P^t \) respectively. Then for each \(x \in \mathbb{R}^l \) the following estimate is valid