Effects of the diuretics mannitol or acetazolamide on nephrotoxicity and physiological disposition of cisplatin in rats

Nahed M. Osman¹, Marion P. Copley², and Charles L. Litterst¹

¹ Laboratory of Medicinal Chemistry and Pharmacology, Division of Cancer Treatment, National Cancer Institute, Bethesda, MD 20205, USA
² Laboratory of Experimental Pathology, Division of Cancer Cause and Prevention, Frederick Cancer Research Facility, Frederick, MD 21701, USA

Summary. The anticancer drug cisplatin has been known to produce severe renal lesions characterized by high levels of blood urea nitrogen (BUN), toxic nephrosis, and platinum (Pt) retention in the kidney. The effect of IV pretreatment with acetazolamide (ACZ) 30 min before or mannitol (MAN) immediately prior to IP administration of 5 mg/kg cisplatin on Pt excretion, tissue distribution, and nephrotoxicity was investigated in male F344 rats.

ACZ pretreatment reduced the cisplatin-induced nephrotoxicity, as indicated by only a slight elevation of BUN, a milder histopathologic lesion, and a more rapid recovery of renal function and structure. Although MAN-pretreated animals exhibited similar changes in BUN to ACZ-pretreated animals, the renal damage was similar to that seen in animals treated with cisplatin alone. A reduction of kidney Pt content was observed with both diuretics, although there was significantly less retention after ACZ pretreatment.

The diuretic ACZ was more effective than MAN in reducing the renal lesions induced by cisplatin and it might be clinically useful in preventing cisplatin nephrotoxicity.

Introduction

Renal toxicity is an important potential complication following tumor chemotherapy with cisplatin (DDP). A number of methods for reducing the renal toxicity have been investigated [15]. In patients, the most commonly used is large-volume hydration with diuresis [6]. In animals, furosemide or mannitol-induced diuresis concurrent with DDP administration has been reported to decrease DDP renal toxicity in some studies, but to aggravate renal toxicity in others [5, 13]. The exact mechanism of diuretic-induced reduction of nephrotoxicity is not yet known, although the reduction of Pt concentration in the tubular fluid caused by the diuretics is assumed to account for the protection.

Because of questions regarding the value of furosemide or mannitol as diuretics for use with DDP and because of the recognized value of hydration with diuresis for preventing DDP nephrotoxicity, acetazolamide (ACZ) has recently been studied and shown to possess several advantages that recommend it for use with DDP [11]. No direct comparison, however, has been done between ACZ and commonly used diuretics such as mannitol (MAN). The present study was conducted to compare the effects of ACZ and MAN on the nephrotoxicity and tissue distribution of DDP.

Materials and methods

Male Fisher 344 rats (Taconic Farms, Germantown, NY) weighing 175–200 g were used. A 3- to 4-day acclimation period was allowed before initiation of the experiment. Animals had free access to Purina rat chow and tap water.

Cisplatin (cis-dichlorodiammineplatinum) was obtained from the Division of Cancer Treatment, National Cancer Institute, and was prepared immediately before injections at a concentration of 1 mg/ml in 0.9% NaCl solution (NS). Acetazolamide (Lederle Laboratories, Pearl River, NY) was prepared in NS and used at 20 mg/kg [17]. Mannitol was purchased from Sigma Chemical Co., St. Louis, MO, and was used at a dose of 1.8 g/kg prepared in 0.45% NaCl. Both diuretics were used at doses that previously have been shown to produce an optimal diuresis but with no adverse effects on either body weight or BUN levels [11; unpublished data]. Perfix fixative was obtained from Fisher Scientific Co., NJ.

Animals were divided into four groups. The rats were lightly anesthetized with ether for all injections. The first group (CONTROL) received the same volume of NS alone as was received by the drug-treated groups. The second group (DDP) received 5 mg/kg cisplatin IP. The third group (ACZ) received ACZ IV in the tail vein 30 min prior to the administration of 5 mg/kg cisplatin IP. The fourth group (MAN) received MAN IV just prior to administration of 5 mg/kg DDP IP. Five animals from each group were kept in plastic cages and killed by ether overdose 4 days after treatment. Blood was collected from the aorta into a heparinized syringe and plasma was immediately separated. Liver and kidneys were removed and weighed. One kidney was fixed in Perfix solution, sectioned at 5 μm, and stained with hematoxylin and eosin for histologic evaluation. A small portion of each tissue was digested in 10 volumes of concentrated nitric acid for evaluation of tissue platinum concentration.

Five additional animals from each group were placed into individual metabolic cages immediately after dosing. Urine was collected and its volume measured at 30, 60, and 120 min, 24 h, and then daily for 7 days, and the platinum concentration was determined. On day 7 these animals were killed by ether overdose and blood and tissues were collected and analyzed as described above. Additional animals were killed 4 and 24 h after treatment and kidneys were removed and homogenized in NS. A portion of the homogenate was combined with an equal volume of 10% trichloroacetic acid to precipitate tissue proteins. Platinum concentration was determined in the
homogenate and in the supernatant for estimation of the amount of Pt that was bound to tissue proteins. Plasma from all cisplatin-treated animals was used for platinum analysis and for determination of BUN according to the diacetyl monoxime method described by Crocker [2]. Platinum concentrations in plasma, urine, and tissue digests were estimated by atomic absorption spectrophotometry [9]. Differences among the four treatment groups were statistically evaluated using an analysis of variance with significance determined at $P \leq 0.05$.

Results

By day 4, body weights of animals from the DDP group had dropped to 50% of the weight at day 0 (Fig. 1). On day 4 animals in the ACZ and MAN groups showed less weight loss than was seen in the DDP group, reaching 84% and 87% of the weight recorded on day 0, respectively. On day 7 the three groups had regained weight up to 83%, 108%, and 97% of control in the DDP, ACZ, and MAN groups, respectively.

Figure 2 shows the results of BUN determinations on day 4 and 7 after drug administration. Rats treated with cisplatin only had BUN values of 43.5 ± 8.7 mg/dl and 26.4 ± 5.5 mg/dl on days 4 and 7, respectively. These values were significantly higher than the control values (17.9 ± 1.7 mg/dl). On day 4, BUN values in the ACZ and MAN groups were 24.4 ± 2.7 mg/dl and 26.5 ± 4.7 mg/dl, respectively, which were significantly higher than control but significantly lower than in the DDP group. On day 7, the BUN values of the ACZ and MAN groups had both returned to control values. BUN values in the DDP group were obviously returning to normal but were still higher than BUN values in the control group (day 0 values, Fig. 2).

Figure 3 shows urine volume in the different treatment groups. The DDP group showed two peaks of urine output, one on day 1 and one on day 6 after treatment. In the ACZ group there was an increase in urine volume on days 1, 2, and 5. In the MAN group, urine volume was increased significantly on all days except day 2.

Figure 4 shows the cumulative percent of the administered dose of cisplatin that was excreted in the urine. The pattern of elimination of platinum was biphasic in all treatment groups, with the highest amount being excreted during the first 24 h. There were no significant differences in the pattern of platinum excretion among the three groups, although there was a tendency for less platinum to be excreted in animals pretreated with mannitol.

Table 1 shows the total platinum concentrations in plasma, liver, and kidney. On day 4, kidney and liver concentrations of platinum were similar in animals given DDP only or DDP plus either ACZ or MAN. However, the platinum concentration was significantly higher in the ACZ group than in the DDP or MAN groups.

On day 7, the platinum concentrations in the plasma were the same in the three groups. The platinum concentration in the liver was significantly lower in the ACZ group than in the DDP and MAN groups. The renal platinum concentration in both the ACZ and MAN groups was significantly less than in the DDP group. Furthermore, the renal platinum concentration in the ACZ group was significantly lower than that in the MAN group.

Table 2 shows the concentration of free and protein-bound platinum in plasma and kidney 4 h and 24 h after treatment. After 4 h renal content of free and bound platinum was the same in all three groups. However, total plasma platinum was significantly higher in the ACZ group than in the DDP or MAN groups. The total plasma platinum concentration was the same in the three groups after 24 h, but the renal concentrations of both free and protein-bound platinum were significantly lower in the ACZ and MAN groups than in the DDP group. As noted in the preceding paragraph, renal platinum content in the ACZ group was significantly less after 7 days than in the MAN group.

Four days after drug administration, the kidneys from animals in the DDP group showed a moderately severe acute tubular necrosis, which appeared at the corticomedullary junction (CMJ). This was characterized by cellular swelling and degeneration, karyorrhexis, aberrant mitotic figures, multifocal proximal tubular necrosis, tubular dilation, and slight protein leakage into the tubular lumen. The renal lesions in the MAN group were similar to those in the DDP group.

![Fig. 1. Effect of ACZ (20 mg/kg IV) or MAN (1.8 g/kg IV) on DDP (5 mg/kg IP)-induced changes in body weight relative to day 0. Values are means ± SD. * Values significantly higher than in DDP group.](image1)

![Fig. 2. Effect of ACZ (20 mg/kg IV) or MAN (1.8 g/kg IV) on DDP (5 mg/kg IP)-induced changes in BUN. Values are means ± SD. * Values significantly lower than in DDP group.](image2)