SL(n + 1, C) Strata and Orbits in the Solution Space of Euclidean CPⁿ Models

G. ARSENAULT
CRM and Département de physique, Université de Montréal, CP 6128, succ. A, Montréal, Canada H3C 3J7

M. JACQUES**
CRM and Laboratoire de physique nucléaire, Université de Montréal, CP 6128, succ A, Montréal, Canada H3C 3J7

and

Y. SAINT-AUBIN
CRM and Département de mathématiques et de statistique, Université de Montréal, CP 6128, succ. A, Montréal, Canada H3C 3J7

(Received: 16 October 1987)

Abstract. We further study the action of SL(n + 1, C) on the space of finite action solutions of the two-dimensional Euclidean CPⁿ models. We decompose the space of k-instantons into strata. Each stratum is characterized by an integer m with 0 ≤ m ≤ min(k, n) which can be calculated from the instanton by purely algebraic means. The k-instantons with m = n are called generic. Their stratum is shown to be dense in the space of k-instantons when k ≥ n. The isotropy subgroups for each stratum are identified.

Résumé. Nous poursuivons l'étude de l'action de SL(n + 1, C) sur l'espace des solutions à action finie du modèle CPⁿ sur l'espace euclidien bi-dimensionnel. L'espace des k-instantons est décomposé en strates. Chaque strate est caractérisée par un entier m tel que 0 ≤ m ≤ min(k, n) et qui peut être calculé à partir de l'instanton par des méthodes purement algébriques. Les k-instantons avec m = n sont dits génériques. Leur strate est dense dans l'espace des k-instantons (lorsque k ≥ n). Les sous-groupes d'isotropie de chacune des strates sont identifiés.

1. In a previous paper [1], we exhibited an explicit action of the group SL(n + 1, C) on the space of finite action solutions of two-dimensional Euclidean CPⁿ models. This action reduces to the obvious global symmetry of the models when restricted to SU(n + 1), but extends to a far from trivial symmetry for the remaining part of SL(n + 1, C). It turns out that this action of SL(n + 1, C) is not transitive on the solution space; in fact, it is even not transitive on the set of k-instanton solutions for a fixed k.

In this Letter, we study the structure of strata of this action on the space of k-instantons. Using the concept of the family of a solution introduced in [1, 2], we define m(z) + 1 to be the number of solutions in the family of the solution z. (Hence 0 ≤ m(z) ≤ n.) The first proposition asserts that m(z) is invariant under the group action.

* Supported in part by the Natural Sciences and Engineering Research Council of Canada and by the 'Fonds FCAR pour l'aide et le soutien à la recherche'.

** On leave from the Institut de Physique Théorique, Université Catholique de Louvain, Belgium.
The solutions with \(m(z) = n \) will be called \textit{generic} and all the other ones \textit{degenerate}. The second proposition proves that any degenerate solution (with \(m(z) < n \)) can be brought into a solution of the CP\(^n\) model by the action of \(\text{SL}(n + 1, \mathbb{C}) \). With the latter result, it is possible to obtain the isotropy subgroup of any solution and hence to identify the various strata. Each stratum is the set of solutions with a given \(m \). Finally we show that for \(k \geq n \), the set of generic \(k \)-instantons is dense in the set of all \(k \)-instantons, hence justifying the name \textit{generic}.

2. Let us begin by recalling some well-known facts about CP\(^n\) models defined on two-dimensional Euclidean space with coordinates \(x_{\pm} = x_1 \pm ix_2 \). The field of the model is a vector \(z(\mathbf{x}_\pm, \mathbf{x}_- \in \mathbb{C}^{n+1} \) of unit length, satisfying the field equation:

\[
D_+ D_+ z + (z^+ D_- D_+ z) z = 0,
\]

where the covariant derivatives \(D_\pm \) are defined on any field as:

\[
D_\pm = \delta_\pm - (z^\dagger \delta_\pm z).
\]

The (anti-)self-duality condition takes the simple form:

\[
D_\mp z = 0
\]

and (anti-)instantons are defined as the solutions of Equation (3) with finite action. The general \(k \)-instanton solution is given by \((n + 1)\) polynomials \(p_l(x_+) \) of \(x_+ \) only \((0 \leq l \leq n)\), with no common zero and such that the maximal degree of the \(p_l \)'s is \(k \) [2]:

\[
z_l = \frac{p_l(x_+)}{\sqrt{\sum_{l=0}^{n} |p_l(x_+)|^2}}.
\]

Define now operators \(P_\pm \) by their action on any field \(f(x_+, x_-) \in \mathbb{C}^{n+1} \) as:

\[
P_\pm f = \delta_\pm f - \left(\frac{f^\dagger \delta_\mp f}{|f|^2} \right) f.
\]

Acting on solutions \(z \) of Equation (1), the operators \(P_\pm \) have the property:

\[
|z|^2 P_- P_+ z = -z \quad |P_+ z|^2.
\]

Let now \(z \) be any finite action solution of the CP\(^n\) model.

DEFINITION. The family of \(z \), denoted by \(\{z\} \), is the ordered set:

\[
\{z\} = \left\{ \frac{P_-^{-1} z}{|P_-^{-1} z|}, \frac{P_+ z}{|P_+ z|}, \ldots, \frac{P_-^{-1} z}{|P_-^{-1} z|}, \frac{P_+ z}{|P_+ z|}, \ldots, \frac{P_- z}{|P_- z|}, \frac{P_+^{-1} z}{|P_+^{-1} z|}, \frac{P_+ z}{|P_+ z|} \right\}
\]

where \(i \) and \(j \) are defined as the smallest integers such that \(P_\pm^{-1} z = P_\pm^{i+1} z = 0 \). Then [2], \(i + j \leq n \). Hereafter, we will always denote the number of vectors in the family.