MULTI-SOLITON SOLUTIONS TO THE THIRRING MODEL THROUGH THE REDUCTION METHOD*

D. DAVID, J. HARNAD, and S. SHNIDER
Centre de recherche de mathématiques appliquées, Université de Montreal,
Case Postale 6128, Succ. 'A', Montreal H3C 3J7, Canada

RESUMÉ. It est démontré que la méthode de réduction appliquée à un système d'ordre 2 × 2
du type Zakharov-Shabat, muni d'une structure méromorphe appropriée, amène au modèle
classique de Thirring; ce dernier étant de fait la condition d'intégrabilité du précédent système.
Réduisant les transformations de Bäcklund génératrices de solitons, les solutions multi-solitons
sont dérivées de manière explicite.

ABSTRACT. It is shown how the reduction method applied to a 2 × 2 Zakharov-Shabat system
with appropriate meromorphic structure leads to the Thirring model as integrability conditions.
Reducing the generic soliton-generating multi-Bäcklund transformations, the general multi-soliton
solutions are explicitly derived.

1. INTRODUCTION

The Thirring model:

\[\begin{align*}
\phi_{1 \eta} &= 2ig^2 1 \phi_2 l^2 \phi_1 - im\phi_2, \\
\phi_{2 \xi} &= 2ig^2 1 \phi_1 l^2 \phi_2 - im\phi_1,
\end{align*} \]

(1.1)

\[\phi_1 (\xi, \eta), \phi_2 (\xi, \eta) \in \mathbb{C} \]

has been studied as an example of an integrable 1 + 1-dimensional relativistic system by several
authors [1–3]. Kuznetsov and Mikhailov [1, 2] have worked out the inverse scattering trans-
form which allows, in principle, the determination of all localized solutions. In particular, they
have explicitly calculated the one-soliton solution and the phase shifts for soliton collisions. As
is usual in such systems, the full inverse scattering method, which requires the solution of a
Gelfand-Levitan-Marchenko type integral equation, is more cumbersome than necessary if
one is only interested in obtaining explicit multi-soliton solutions. For the latter, simpler

* Research supported in part by the Natural Sciences and Engineering Research Council of Canada and an
FCAC grant from the Ministère de l'Education du Gouvernement du Québec.

approaches, such as Bäcklund transformations, lead directly to the results.

In this letter we show how application of the reduction procedure, as formulated by Mikhailov [4], and further developed by two of the present authors [5], gives rise very simply to explicit multi-soliton solutions to the Thirring model. The general framework for applying the reduction method to multi-Bäcklund transformations and their solution is fully detailed in [5].

2. THE THIRRING MODEL AND REDUCTION PROCEDURE

We begin with the 2 × 2 Zakharov–Shabat system:

\[
\psi_\xi = U(\lambda)\psi, \quad \psi_\eta = V(\lambda)\psi
\] (2.1)

where

\[
U(\lambda) = U_0 + U_1\lambda + U_2\lambda^2, \quad V(\lambda) = V_0 + V_1\lambda^{-1} + V_2\lambda^{-2}
\] (2.2)

and \(U_0, U_1, U_2, V_0, V_1, V_2\) are traceless matrix functions of the light-cone variables \((\xi, \eta) \in \mathbb{R}^2\) and \(\psi(\lambda, \xi, \eta)\) is an \(\text{SL}(2, \mathbb{C})\)-valued function depending on the complex parameter \(\lambda\). The integrability conditions for (2.1) are:

\[
U_{0,\eta} - V_{0,\xi} + [U_0, V_0] + [U_1, V_1] + [U_2, V_2] = 0,
\]

\[
U_{1,\eta} + [U_1, V_0] + [U_2, V_1] = 0, \quad U_{2,\eta} + [U_2, V_0] = 0,
\] (2.3)

\[
V_{1,\xi} + [V_1, U_0] + [V_2, U_1] = 0, \quad V_{2,\xi} + [V_2, U_0] = 0.
\]

Applying the reduction procedure [4, 5], we impose the following conditions, which amount to invariance under an order-four automorphism group of the system (2.1):

\[
\psi^+(\lambda) = \psi^{-1}(e\lambda),
\] (2.3a)

\[
\tau \psi(\lambda)\tau^{-1} = \psi(-\lambda)
\] (2.3b)

where

\[
\tau = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e = \pm 1.
\] (2.4)

The infinitesimal form of the invariance conditions gives, by Equation (2.1):

\[
U^+(\lambda) = -U(e\lambda), \quad V^+(\lambda) = -V(e\overline{\lambda})
\] (2.5a)