Singular Terms and Truth

by KAREL LAMBERT

UNIVERSITY OF ALBERTA

A dictum fundamental in the Quinian theory of singular terms is the following:\(^1\)

(1) No singular term which permits a true statement including it to be turned into a falsehood (via existential generalization with respect to that term) can be a substituend of a variable.

Following (1), for example, "Pegasus" cannot be taken as a substituend of the variable "x" because the inference

(2) There is no such thing as Pegasus,
    Therefore, (\exists x) (there is no such thing as x),

is invalid. Hence, no statement in which "Pegasus" occurs can be a premise in a valid inference where a premise is (a) an instance of a logical formula or is (b) an instance of a sentential part of a logical formula.\(^2\) For example,

(3) Pegasus is a horse,
which, after Quine, is false because it applies a simple predicate to
"Pegasus," cannot be a premise in a valid inference. A consequence of
this view is that the statement

\[(4) \text{ A singular statement is (or can be) true (or false) } \equiv \text{ it}
\text{ is (or can be) a premise in a valid inference}\]

is false. The initial statement in (2) and the statement in (3) are, respect-
ively, true and false; but they are not, nor can they ever be, premises in
a valid inference.

However, the propriety of (1) is open to question. Recently, H. S.
Leonard, in his admirable paper "The Logic of Existence," has contested
Quine's position on singular terms. If his counter-arguments are correct,
and I think that they are, (1) has to be abandoned. But there is reason to
suspect (1) within the context of Quine's own theory.

Quine holds that singular terms are eliminable by paraphrase in terms
of quantification theory. Thus, for example, it is theoretically possible at
least to "translate" the initial statement in (2) into a statement which
does not contain "Pegasus" (or a description corresponding to that term).
But this leads to paradox in Quine's theory. For by (1) "There is no such
thing as Pegasus" cannot be a premise in a valid inference. But its trans-
lation can. The statement in question is translatable, via a corresponding
description, into

\[(5) \sim (\exists y) (\forall x) (\phi x \equiv \cdot x = y),\]

where "\(\phi\)" is "is-Pegasus." But (5) is a premise in the valid inference

\[(6) \sim (\exists y) (\forall x) (\phi x \equiv \cdot x = y),\]

Therefore, \((\exists y) (\exists x) \sim (\phi x \equiv \cdot x = y)\).

The same applies to the false statement in (3). This result makes a mock-
ery of our logical tests of the validity of those inferences which contain
nonnaming singular terms. Hence, either the method of eliminating singu-
lar terms or (1) must be rejected as they now stand.

Since the legitimacy of (1) is suspect, it may not provide counter-
instances of (4) after all. I shall reject (1). But I shall accept (4) and
proceed to show how it can be restored. Fortunately, Leonard's paper
offers an alternative method for dealing with those singular statements
which contain nonreferential occurrences of names that avoids the above
difficulties.

Consider (2). Quine does not regard it as an instance of

\[(7) \phi y \supset (\exists x) \phi x.\]

For if (2) were taken to be valid, one would be forced to deny the truth
of "There is no such thing as Pegasus." But this is absurd. Leonard's way