5-Fluoropyrazoloanthrone (XIV). A 3.17-g (10 mmole) sample of sulfonic acid XII was heated in 30 ml of 5% nitrosylsulfuric acid at 60° for 6 h, after which the mixture was cooled and poured into 100 g of ice. The suspension was poured into 100 ml of 5% sodium hypophosphate (NaH₂PO₃) solution at 20°. After nitrogen evaporation ceased, the mixture was heated to 70°, and 70 g of sodium sulfate was added. The mixture was cooled and filtered, and the precipitate was squeezed on the filter. It was then suspended in a mixture of 10% HCl and 3.1 g of KClO₃, and the suspension was heated to 95°. A solution of 0.2 g of NH₄Cl in 5 ml of water was added dropwise at this temperature in the course of 2 h, after which the mixture was cooled and filtered. The precipitate was washed with water to remove acid, squeezed on the filter, and dried. Chloro derivative XIV was crystallized from aqueous ethanol to give yellow-orange needles.

Pyrazoloanthrone-3-diazenium Sulfate (XIII). A solution of 2.35 g (10 mmole) of amine I in 20 ml of concentrated H₂SO₄ was added to 12 ml (12 mmole) of 7% nitrosylsulfuric acid, and the mixture was stirred at 60° for 6 h. The diazo solution was cooled and poured over 200 g of ice. The aqueous mixture was filtered, and the precipitate was washed successively with 5% sulfuric acid and ether. Diazenium sulfate XIII was obtained as a red-brown powder.

3-Methylpyrazoloanthrene was obtained by a method described in [11]; 3-chloropyrazoloanthrone, in [1]; alkylamine XVII was obtained analogously by synthesis of amine I from 1-chloro-2-butylaminoanthraquinone and gave red-orange crystals on crystallization from aqueous ethanol.

LITERATURE CITED

HYDROSILYLATION OF 2-VINYQUINOLINE

É. Ya. Lukevits, T. V. Lapina,
É. É. Liepin'sh, and I. D. Segal

It was found that mixtures of two isomers are formed in the hydrosilylation of 2-vinylquinoline with trialkylsilanes, triethoxysilane, ethyldichlorosilane, and pentamethyldisiloxane in the presence of H₃PtCl₄·6H₂O or (Ph₃P)₃RhCl. The dependence of their ratio on the structure of the silane, the nature of the solvent and catalyst, and the order of mixing of the reagents was investigated.

The hydrosilylation of hetaryalkenes usually gives a mixture of two isomers [2, 3]; however, the factors that affect their ratio have not been studied at all. We therefore undertook a systematic study of the effect of

Communication LXXI from the series "Nitrogen-Containing Organosilicon Compounds." See [1] for communication LXX.
<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>bp. °C (nm)</th>
<th>d₁₀</th>
<th>ηₜₙ</th>
<th>Found</th>
<th>Empirical formula</th>
<th>Calculated</th>
<th>Isomer ratio (IIIa : IIIb), %</th>
<th>Yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>144—146 (1)</td>
<td>0.9784</td>
<td>1.5510</td>
<td>74.6</td>
<td>CH₃H₂NSi</td>
<td>74.6</td>
<td>90</td>
<td>5.4</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td>182—184 (2)</td>
<td>0.9577</td>
<td>1.5510</td>
<td>75.4</td>
<td>CH₃H₂NSi</td>
<td>75.4</td>
<td>9.3</td>
<td>5.2</td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃</td>
<td>OSi(CH₃)₃</td>
<td>132—134 (3)</td>
<td>0.9629</td>
<td>1.6220</td>
<td>65.2</td>
<td>C₄H₉OSi₂</td>
<td>65.2</td>
<td>8.5</td>
<td>5.4</td>
</tr>
<tr>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td>156—158 (2)</td>
<td>0.9876</td>
<td>1.5625</td>
<td>74.9</td>
<td>C₂H₅H₂NSi</td>
<td>74.9</td>
<td>9.0</td>
<td>5.4</td>
</tr>
<tr>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td>154—156 (1)</td>
<td>0.9558</td>
<td>1.5510</td>
<td>76.1</td>
<td>C₂H₅H₂NSi</td>
<td>76.1</td>
<td>9.4</td>
<td>4.9</td>
</tr>
<tr>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td>178—177 (2)</td>
<td>0.9370</td>
<td>1.5345</td>
<td>70.8</td>
<td>C₂H₅H₂Si</td>
<td>70.8</td>
<td>9.5</td>
<td>4.1</td>
</tr>
<tr>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td>142—144 (1)</td>
<td>0.9841</td>
<td>1.5595</td>
<td>75.1</td>
<td>C₂H₅H₂NSi</td>
<td>75.1</td>
<td>9.3</td>
<td>5.2</td>
</tr>
<tr>
<td>OC₃H₅</td>
<td>OC₃H₅</td>
<td>OC₃H₅</td>
<td>160—162 (1)</td>
<td>1.0502</td>
<td>1.5175</td>
<td>63.9</td>
<td>C₃H₁₀O₂H₂NSi</td>
<td>63.9</td>
<td>7.7</td>
<td>5.2</td>
</tr>
</tbody>
</table>