In a recent, important series of papers, Prof. Donald Davidson has proposed and illustrated a theory about theories of meaning. The theory, to put it very much more crudely than Davidson does, is simply that a theory of meaning for the (natural) language \(L \) ought to take the form of a truth definition for \(L \). That is, such a theory ought to recursively associate each truth-valuable sentence of \(L \) with a representation of its truth conditions. Davidson says "what we require of a theory of meaning for a language \(L \) is that without appeal to any (further) semantical notions it place enough restrictions on the predicate 'is \(T \)' to entail all sentences got from schema [1] when 's' is replaced by a structural description of a sentence of \(L \) and 'p' by that sentence." (T & M 309)

\[
\text{(1)} \quad s \text{ is } T \text{ if and only if } p
\]

Davidson has a number of interesting things to say about the project of framing a truth definition for a natural language, two of which I want to mention here. The first is that a proposed truth definition for \(L \) amounts to an empirical theory of (an aspect of) the structure of \(L \). "Like any theory, it may be tested by comparing some of its consequences with the facts ... we only need to ask, in selected cases, whether what the theory avers to be the truth conditions for a sentence really are" (T & M 311).

I assume Davidson would want to add that other sorts of constraints upon the adequacy of empirical theories of language would also operate here: simplicity, naturalness, and so on.

Second, a truth definition for \(L \) amounts to an empirical theory of an aspect of the structure of \(L \). In particular, such a theory must contribute to an account of the learnability of \(L \) by showing how the truth conditions upon the infinitely many sentences of \(L \) can be finitely represented. This latter consideration is important, for it blocks certain philosophical moves which are both easy and unilluminating. For example, Davidson points out, it is allright for the English sentence 'Bardot is good' to have, as its representation in a correct truth theory, the formula 'Bardot is good' (i.e.,
it is alright for that sentence to be represented by a formula consisting of a
primitive predicate together with a name). But "'Bardot is a good actress'
is another matter. The point is not that the translation of the sentence is
not in the metalanguage – let us suppose it is. The problem is to frame a
truth definition such that 'Bardot is a good actress' is true if and only if
Bardot is a good actress – and all other sentences like it – are conse-
quences. We might think of taking 'is a good actress' as an unanalyzed
predicate. This would obliterate all connection between 'is a good actress'
and 'is a good mother'. And it would give us no excuse to think of 'good'
in this use as a word or semantic element. But worse, it would bar us from
framing a truth definition at all, for there is no end to the predicates we
would have to take as logically simple (and hence accommodate in separate
clauses in the definition of satisfaction.)" (T & M 317).

To put it briefly, then, what Davidson wants is a theory which pairs
each (declarative) sentence in a language with a representation of its
truth conditions and which does so in a way that reveals whatever se-
mantically significant structure the sentence contains. A theory does the
first if and only if it entails all formulae of the form 'p' is true iff p. A theory
does the second if and only if it (a) pairs each sentence with a formula
which formally determines the entailments of the sentence and (b) effects
the pairing by reference to whatever productive structures the sentence
contains. Davidson appears to believe (what seems to me to be far from
obvious) that a theory which entails all formulae of the form 'p' is true iff p
cannot help but reveal the semantically significant structure of the sen-
tences which it describes; that is, Davidson appears to believe that there
is no trivial way of satisfying the constraints upon a truth definition.

Actually it remains to be shown that a truth definition must, ipso facto,
reveal logical form. Say S is a syntax of L iff S recursively enumerates all
and only the well-formed formulae (the grammatical sentences) of L.
Every sentence in the range of S will be identifiable with an ordered
sequence of markers (say, for the sake of simplicity, words) and every such
sequence will, presumably, be of finite length. It is trivial, given a well
formed formula $F(=w_1, w_2 \ldots w_n)$ to define a function which maps that
formula onto a formula of the form ""$w_1, w_2, \ldots w_n$" if $w_1, w_2, \ldots w_n$".
If we now want a theory which entails all formulae of this latter form,
we need only adopt the postulate that every well formed formula of that
form is an axiom.