fore depend to a lesser extent on the character of the hybridization of the ring nitrogen atom, can be considered to be more expedient. The coincidence of \(\delta(5-\text{CH}) \) in the PMR spectra of tautomeric Ia and model derivatives IIa (Table 2) indicates the amine structure of 2-arylamino-5,6-dihydro-4H-1,3-thiazines Ia.

It follows from the PMR spectra of TFA solutions of I-III that bases I-III are protonated at the nitrogen atom attached to the C=N double bond, but the positive charge is delocalized over the amidine system. The coincidence of the chemical shifts of the signals of all of the methylene groups of I-III (Table 2) indicates an identical structure for the resulting cations. At the same time, on passing from the bases to the cations the weak-field shifts of the signals of these groups (\(\Delta \delta \text{CH}_2 \)) of amine models II and substituted I are found to be close and differ markedly from the corresponding values of models of imine structure III, and the differences between the \(\Delta \delta \text{CH}_2 \) values of the latter (III) and the \(\Delta \delta \text{CH}_2 \) values of tautomeric derivatives I are close to the differences in the chemical shifts of the methylene groups of bases II and III (Table 2). This once again indicates that aryl- and alkylaminothiazines Ia and Ib exist in the amine form.

LITERATURE CITED

SYNTHESIS OF 2-HYDRAZINO- AND 2-AMINO-1,3,4-THIADIAZINES CONTAINING POLYHYDRIC PHENOL RESIDUES IN THE 5 POSITION

2-Hydrazino-1,3,4-thiadiazines containing polyhydric phenol residues in the 5 position were obtained by reaction of 3,4-dihydroxy-, 2,5-dihydroxy-, and 2,3,4-trihydroxyphenacyl \(\omega \)-halides with thiocarbohydrazide. 2-Amino-1,3,4-thiadiazines were obtained by reaction of 3,4-dihydroxy- and 2,5-dihydroxyphenacyl \(\omega \)-halides with thiosemicarbazide in acidic and alcoholic media. In contrast to the dihydroxy derivatives, 2,3,4-trihydroxyphenacyl halide forms a 2-amino derivative only in strongly acidic media, whereas the isomeric thiazole compound with a hydrazine group in the 2 position of the thiazole ring is formed in alcoholic media.

In order to obtain new inhibitor-antioxidants we synthesized a series of 2-hydrazino- and 2-amino-1,3,4-thiadiazines containing polyhydric phenol (pyrocatechol, hydroquinone, and pyrogallol) residues in the 5 position.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.
TABLE 1. 2-Hydrazino- and 2-Amino-1,3,4-Thiadiazines Containing Polyhydric Phenol Residues in the 5 Position

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>X</th>
<th>mp, °C*</th>
<th>Empirical formula</th>
<th>Found, %</th>
<th>Calculated, %</th>
<th>UV spectra, λmax (ε · 10^4)</th>
<th>Yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3,4-(OH)₂C₆H₄</td>
<td>NH₃H₂</td>
<td>183–186</td>
<td>C₉H₈N₄O₂S</td>
<td>45.1</td>
<td>4.4</td>
<td>23.2 13.3</td>
<td>222* 327 (1.6)</td>
</tr>
<tr>
<td>II</td>
<td>2,5-(OH)₂C₆H₄</td>
<td>NH₃H₂</td>
<td>175–176</td>
<td>C₉H₈N₄O₂S</td>
<td>42.6</td>
<td>4.7</td>
<td>21.9 12.2</td>
<td>238* 359 (1.2)</td>
</tr>
<tr>
<td>III</td>
<td>2,3,4-(OH)₃C₆H₃</td>
<td>NH₃H₂</td>
<td>203–204</td>
<td>C₉H₈N₄O₄S</td>
<td>45.0</td>
<td>4.1</td>
<td>21.8 12.5</td>
<td>218* 333 (1.1)</td>
</tr>
<tr>
<td>IV</td>
<td>3,4-(OH)₂C₆H₄</td>
<td>NH₂</td>
<td>194–195</td>
<td>C₉H₈N₂O₂S</td>
<td>48.3</td>
<td>4.1</td>
<td>18.6 14.3</td>
<td>238* 331 (1.7)</td>
</tr>
<tr>
<td>V</td>
<td>2,5-(OH)₂C₆H₄</td>
<td>NH₂</td>
<td>196–197</td>
<td>C₉H₈N₂O₄S</td>
<td>48.5</td>
<td>4.1</td>
<td>18.7 14.5</td>
<td>250 (1.2) 367 (1.0)</td>
</tr>
<tr>
<td>VI</td>
<td>2,3,4-(OH)₃C₆H₃</td>
<td>NH₂</td>
<td>185–186</td>
<td>C₉H₈N₂O₄S</td>
<td>44.7</td>
<td>3.8</td>
<td>17.6 13.6</td>
<td>217 (2.0) 344 (1.5)</td>
</tr>
</tbody>
</table>

*All of the substances melted with decomposition.
†The maximum was expressed as a shoulder.

Fig. 1. PMR spectra (in CF₃COOH): A) 2-hydrazino-5-(3,4-dihydroxyphenyl)-1,3,4-thiadiazine (I); B) 2-hydrazino-4-(2,3,4-trihydroxyphenyl)thiazole (IX).

Fig. 2. UV spectra (in ethanol): 1) 2-hydrazino-5-(2,3,4-trihydroxyphenyl)-1,3,4-thiadiazine (III); 2) 2-amino-5-(2,3,4-trihydroxyphenyl)-1,3,4-thiadiazine (VI); 3) 2-hydrazino-4-(2,3,4-trihydroxyphenyl)thiazole (IX); 4) 2-hydrazino-4-phenylthiazole (VIII).