Computational chemistry on the FPS-X64 scientific computers

Experience on single- and multi-processor systems

Martyn F. Guest¹, Robert J. Harrison¹, Johan H. van Lenthe², and Lambertus C. H. van Corler²

¹Computational Science Group, SERC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
²Theoretical Chemistry Group, State University of Utrecht, Transitorium III, Padualaan 8, Utrecht-De Uithof, The Netherlands

(Received July 7, revised and accepted September 10, 1986)

Contents

1. Introduction 118
 1.1. Cost-effective computing in chemistry 118
2. The FPS-X64 scientific computers 119
 2.1. Hardware 120
 2.2. Strategy for using the scientific computer 120
3. Computational chemistry 121
 3.1. Code implementation strategy 121
 3.2. Disk I/O 124
 3.3. Role of the MMO 125
4. An ab initio computational chemistry system 128
 4.1. Implementation of GAMESS on an FPS-164 129
 4.2. Performance of GAMESS on an FPS-164 130
 4.3. Performance of the FPS-264 132
 4.4. Towards open-ended ab initio capabilities 133
5. Cost effectiveness of the FPS-164 134
6. Parallel processing and computational chemistry 134
 6.1. Extremes in multiprocessor implementations 135
 6.2. MVAP architectures 136
 6.3. CMP architectures 137
 6.3.1. Available CMP systems 138
7. A parallel implementation of quantum chemistry codes .. 138
7.1. The parallel environment at ECSEC .. 139
7.2. Implementation strategy ... 140
7.3. Practical considerations ... 141
 7.3.1. Integrals and SCF .. 141
 7.3.2. Integral transformation .. 142
 7.3.3. Direct-CI .. 142
 7.3.4. Preliminary results ... 143
7.4. Role of parallelism in computational chemistry .. 143
8. Summary ... 145

Appendices
I. A computational chemistry and physics benchmark .. 146
II. Using the APs under APEX64 .. 146

1. Introduction

The purpose of this paper is to review the impact and use of the FPS-X64 scientific computers in computational chemistry, focusing attention on experience gained on both an FPS-164/MAX, installed at the Science and Engineering Research Council’s Daresbury Laboratory, UK, and on the distributed system, composed of an IBM 4381-3 front end processor and 10 FPS-164 attached array processors, at the ECSEC facility in Rome, Italy.

The review is necessarily selective, and is divided into several sections. In Sect. 2 we outline some general characteristics of the FPS-X64 machines. We consider their performance in various computational chemistry kernels in Sect. 3, where the general strategy adopted in code implementation is outlined. In Sect. 4 we consider the implementation and performance on FPS X64 scientific computers of a typical \textit{ab initio} program, GAMESS, and provide in Sect. 5 estimates of the cost-effectiveness of these machines in the context of supercomputers exemplified by the Cray-1S and CDC Cyber-205.

In Sect. 6 we consider the feasibility of migrating computational chemistry codes to the different architectures characteristic of the next generation of multiprocessors. Finally, in Sect. 7 we describe our initial attempts at adapting codes to run on the distributed system of multiple FPS processors at the ECSEC facility in Rome.

1.1. Cost-effective computing in chemistry

The introduction in 1976 of the VAX 11/780 by Digital provided arguably the greatest impetus to the use of minicomputers in large scale chemical computations, and led to the migration of many theoretical chemists from the less cost-effective alternative offered by the large scalar mainframes that typified the central computing facility of the 1960s and 1970s. Since 1976 use of the VAX-11/780 “superminicomputer” or its equivalents in chemical computations has proliferated to the extent of becoming a \textit{de facto} standard. Yet even the new generation of superminis, from Data General, Digital, Gould/SEL, Prime, Harris, IBM and Perkin-Elmer [1], that provide speeds several times that of the VAX-11/780,