The Law of the Iterated Logarithm for Normalized Empirical Distribution Function

E. Csáki
Mathematical Institute of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13–15, Hungary

This paper deals with the law of the iterated logarithm and its analogues for
\[\sup_{x} |x - F_{n}(x)| (x(1-x))^{\frac{1}{2}}, \]
where the sup is taken on an interval of the form
\[(a_{n}, b_{n}), \quad (0 < a_{n} < b_{n} < 1). \]
Under certain conditions on \(a_{n} \) and \(b_{n} \) the corresponding \(\lim \sup \) results will be proved.

1. Introduction

Let \(X_{1}, X_{2}, \ldots \) be a sequence of independent random variables each having the uniform distribution on \((0, 1)\) and denote by \(F_{n}(x) \) the empirical distribution function of the variables \(X_{1}, X_{2}, \ldots, X_{n} \).

In this paper we consider the process \((F_{n}(x) - x) \tau(x) \) with some appropriate weight function \(\tau(x) \). Special attention will be paid to the normalizing weight function defined by

\[\tau_{0}(x) = \{x(1-x)\}^{-\frac{1}{2}}. \tag{1.1} \]

Put

\[\alpha_{n}(x) = (F_{n}(x) - x) \tau_{0}(x). \tag{1.2} \]

Then the process \(n^{\frac{1}{2}} \alpha_{n}(x) \) is normalized in the sense that for all integer \(n \geq 1 \) and all \(0 < x < 1 \) we have

\[E(\alpha_{n}(x)) = 0 \quad \text{and} \quad nE(\alpha_{n}^{2}(x)) = 1. \]

\[n^{\frac{1}{2}} (2 \log \log n)^{-\frac{1}{2}} (F_{n}(x) - x) \tau(x) \]

provided that the weight function \(\tau(x) \) satisfies the condition

\[\int_{0}^{1} \frac{\tau^{2}(x)}{\log \log \{x(1-x)\}^{-1}} \, dx < \infty. \tag{1.4} \]
In [10] it is shown that this condition is not only sufficient but also necessary in some sense. We state only the main corollary to this result as

Theorem 1.1 (James). If the weight function \(\tau(x) \) satisfies (1.4), then

\[
\limsup_{n \to \infty} \left(\frac{n}{\log \log n} \right)^{\frac{1}{3}} \sup_{0 < x < 1} |F_n(x) - x| \tau(x) = \sup_{0 < x < 1} \{2x(1-x)\tau(x)\}^{\frac{1}{2}} \quad \text{a.s.} \tag{1.5}
\]

On the other hand, if the integral in (1.4) diverges, then

\[
\limsup_{n \to \infty} \left(\frac{n}{\log \log n} \right)^{\frac{1}{3}} \sup_{0 < x < 1} |F_n(x) - x| \tau(x) = \infty \quad \text{a.s.} \tag{1.6}
\]

It is easy to see that for \(\tau_0(x) \) defined by (1.1), the integral in (1.4) diverges, hence (1.6) holds true for \(\tau_0(x) \). This statement follows also from a theorem of Baxter [1]. In fact we have shown [4]:

Theorem 1.2. Let \(a_n(x) \) be defined by (1.2) and put

\[
T_n = \sup_{0 < x < 1} |a_n(x)|. \tag{1.7}
\]

If \(\sum a_n = \infty \), then

\[
\limsup_{n \to \infty} (n a_n^2 T_n) = \infty \quad \text{a.s.} \tag{1.8}
\]

If \(\sum b_n < \infty \), then

\[
\limsup_{n \to \infty} (n b_n^2 T_n) = 0 \quad \text{a.s.} \tag{1.9}
\]

An interesting corollary to this result is

\[
\limsup_{n \to \infty} (n^{\frac{1}{3}} T_n) \left(\frac{\log \log n}{\log n} \right)^{-1} = e^{\frac{1}{2}} \quad \text{a.s.} \tag{1.10}
\]

Csörgő and Révész [6] raised the question, what can be stated about \(\sup |a_n(x)| \) where the sup is taken over \(a_n(x) \) with suitably chosen sequence \(\{a_n\} \). They proved

Theorem 1.3 (Csörgő-Révész). Let \(a_n = (\log n)^{\frac{1}{4}}/n \), and \(a_n(x) \) be defined by (1.2). Then

\[
\limsup_{n \to \infty} \left(\frac{n}{\log \log n} \right)^{\frac{1}{3}} \sup_{a_n < x < 1 - a_n} |a_n(x)| = 2 \quad \text{a.s.} \tag{1.11}
\]

Eicker [8] and Kiefer [11] study the behavior of \(F_n(x) \) along a sequence \(\{a_n\} \) and prove the following results:

Theorem 1.4 (Eicker and Kiefer). Assume that \(a_n < \frac{1}{2} \), and

\[
\lim_{n \to \infty} n a_n (\log n)^{-1} = \infty.
\]

Then

\[
\limsup_{n \to \infty} \left(\frac{n}{\log \log n} \right)^{\frac{1}{3}} |a_n(a_n)| = 2^{\frac{1}{6}} \quad \text{a.s.} \tag{1.12}
\]