Representation of an Isotropic Diffusion as a Skew Product*

By

ALBERTO RAÚL GALMARINO

I. Introduction

The processes considered in this paper have state space \mathbb{R}^3 and are characterized by the following conditions:

(i) possess the simple Markov property
(ii) are homogeneous in time
(iii) have continuous paths
(iv) are isotropic
(v) do not pass through the origin at positive times except possibly on a set of paths of zero probability.

These conditions will be made precise in Sec. 2 after the basic notation has been presented.

The sample space of all continuous paths on \mathbb{R}^3 will be expressed as the Cartesian product $\Omega \times \Omega'$ of two sample spaces: Ω consists of all continuous paths ω on the radial coordinate space $[0, \infty)$, and Ω' of all continuous paths ω' on the spherical coordinate space S^2.

A diffusion of the type described is expressed by using spherical coordinates, as

$$x(t, \omega \times \omega') = [r(t, \omega), \varphi(t, \omega')]$$

where $r(t, \omega), \omega \in \Omega$, is the radial motion and $\varphi(t, \omega'), \omega' \in \Omega'$ is the spherical motion both associated to $x(t, \omega \times \omega')$.

It is aimed to prove these results:

a) The radial process $r(t, \omega)$ is simple Markov and homogeneous in time.

b) $x(t, \omega \times \omega')$ can be represented as the so-called skew product of the radial process and an independent spherical Brownian motion \mathfrak{B} run with a clock $\sigma(t, \omega)$ depending on the radial path ω. That is, it will be shown that, with probability one for all t simultaneously:

$$x(t, \omega \times \omega') = (r(t, \omega); \mathfrak{B}[\sigma(t, \omega), \omega']).$$

c) $\sigma(t, \omega)$ is a non-negative, continuous non-decreasing function of t for each fixed ω. For each fixed t it is measurable with respect to the sub-σ-field determined

* Except for minor changes this paper represents the Ph. D. thesis of the author [9]. This research was successively supported by a scholarship from the Consejo Nacional de Investigaciones Científicas y Tecnológicas of Argentina, by an IBM fellowship and by an MIT research-assistantship under contract nonr-1841(38), Office of Naval Research.
by the radial motion up to time t. Moreover it accomplishes the following additive property:

$$\sigma(t, \omega) = \sigma(t - s, \omega^+_{s}) + \sigma(s, \omega) \text{ for } s < t$$

with probability one for all pairs (s, t) simultaneously.

ω^+_{s} in (1.3) is the path defined by the equation:

$$r(t, \omega^+_{s}) = r(t + s, \omega).$$

In Sec. 3, by considering Green operators, the problem is reduced to the computation of the characteristic functional of $\varphi(t, \omega')$ as indicated in (3.21). Sec. 4 introduces a special Markov property for $\varphi(t, \omega')$. In Sec. 5 the characteristic functional of $\varphi(t, \omega')$ is actually computed and the desired expression (3.21) is obtained except for a term that still must be proved to be zero. In this proof, some ideas from [8] and [3] are used, although special arguments have to be applied due to the fact that S^2 is not a group and also in order to show that the clock $\sigma(t, \omega)$ is finite. Sec. 6 leads to the construction of a spherical process with the characteristic functional of $\varphi(t, \omega')$ and makes the above-mentioned term correspond to interlarded Poisson jumps in a spherical Brownian motion run with a suitable clock. Sec. 7 proves the equivalence of $\varphi(t, \omega')$ with the process constructed in Sec. 6 by applying the special Markov property of Sec. 4, and produces the final result.

2. Notation and basic definitions

The sample spaces Ω and Ω' already have been introduced in Sec. 1. Ω consists of all continuous functions ω from $[0, \infty)$ into $[0, \infty)$, and Ω' of all continuous functions ω' from $[0, \infty)$ into S^2.

Throughout this paper \mathcal{B} is the Borel σ-field of subsets of $\Omega \times \Omega'$ generated by sets of the type:

$$(\omega \times \omega': x(t, \omega \times \omega') \in A), \ A \text{ Borel set } \subset \mathbb{R}^3.$$

\mathcal{B}_t is the sub-σ-field of \mathcal{B} whose generators are those in the definition of \mathcal{B} in which $t \leq s$. Analogously $\mathcal{B}_{(s_1, s_2)}$ is that sub-σ-field whose generators have $s_1 < t \leq s_2$.

\mathcal{B}_r is the sub-σ-field generated by sets of the type:

$$(\omega \times \omega': r(t, \omega) \in A_1), \ A_1 \text{ Borel set } \subset [0, \infty).$$

\mathcal{B}_φ is the sub-σ-field generated by sets of the type:

$$(\omega \times \omega': \varphi(t, \omega') \in A_2), \ A_2 \text{ Borel set } \subset S^2,$$

where S^2 is the unit sphere in \mathbb{R}^3.

For each point $a \in \mathbb{R}^3$ the process defines a probability measure $P_a(B)$ for all $B \in \mathcal{B}$. This means the probability that a continuous path starting at a belongs to the Borel set B. A dot will often be used for a generic point in \mathbb{R}^3, for instance, $P_a(B)$. It is understood that, whenever "." is used several times in an argument, it always refers to the same point.