The Kolmogorov Equation for a Plane Barrier Problem

E.M. Cabaña
Universidad Simon Bolivar, Sartenejas, Baruta, Edo. Miranda, Apartado Postal 80659, Venezuela

Summary. The probability density p of a plane Brownian motion stopped by a two-sided constant barrier is shown to be a solution of a Kolmogorov forward equation of the form $\mathcal{L}^*p = 0$. The operator \mathcal{L}^* is the product of two second order differential operators, each of them corresponding to a related one-dimensional Brownian motion.

1. The Expectation of Plane Stochastic Differentials

A plane Brownian motion or Wiener measure on the square $S = (0, 1] \times (0, 1]$ is a probability measure on the space of continuous functions $\beta : S \to R$ such that the variables $\{\beta(x, y) | (x, y) \in S\}$ are a Gaussian family and $E(\beta(x, y)) = 0$, $\text{Cov}(\beta(x, y), \beta(x', y')) = (x \wedge x')(y \wedge y')$ for all $(x, y), (x', y') \in S$ (for a construction of such process we refer to [1]).

Let \mathcal{A} be a family of σ-fields defined on S, increasing in each of the variables x, y and such that for each $(x, y) \in S$, $\mathcal{A}(x, y)$ contains the σ-field of $\{\beta(x', y') | 0 \leq x' \leq x, 0 \leq y' \leq y\}$ and is independent of the σ-field generated by $\{\beta(x', y') - \beta(x' \wedge x, y' \wedge y) | (x', y') \in S\}$.

A random functional e defined on S is said to be nonanticipating when it is measurable over the product of the Borel σ-field in S and $\mathcal{A}(1, 1)$, and, for each $(x, y) \in S$, $e(x, y)$ is $\mathcal{A}(x, y)$-measurable.

Let $\mathcal{P}_n = \{R_{i,j}^{(n)} | i, j = 1, 2, \ldots, 2^n\}$ denote the partition of S into the 2^n equal squares

$$R_{i,j}^{(n)} = \{(x, y) | t_{i-1}^{(n)} \leq x < t_i^{(n)}, t_{j-1}^{(n)} \leq y < t_j^{(n)}\} \quad (i, j = 1, 2, \ldots, 2^n)$$

where

$$t_i^{(n)} = i \cdot 2^{-n} \quad (i = 0, 1, \ldots, 2^n).$$

A functional e is said to be simple when there exists a positive integer n such that e remains constant (as a function of (x, y)) on each square $R_{i,j}^{(n)}$ of \mathcal{P}_n. For
simple and nonanticipating e, its double stochastic integral with respect to β is defined in the customary way as

$$\int_{S(x,y)} e \, d\beta = \sum_{ij} e(i_{l-1}, j_{l-1}) \beta(R_{ij} \cap S(x,y)),$$

(1)

where

$$S(x,y) = (0, x] \times (0, y],$$

and for any rectangle $R=(x', x''] \times (y', y'']$, $\beta(R)$ means the double increment

$$\beta(R) = \square R = \beta(x'', y'') - \beta(x', y'') - \beta(x', y') + \beta(x', y').$$

(Notice that the previous formula defines the symbol \square.)

The stochastic integral $\int_{S(x,y)} e \, d\beta$ of a nonanticipating e such that $P\{\int_S e^2 \, dx \, dy < \infty\} = 1$ on the rectangle $S(x,y) = (0, x] \times (0, y]$ can be defined and constructed following the same steps as in [2] (pp. 21–24) with the obvious modifications, as a uniform limit of stochastic integrals of simple functionals.

The well known Itô's formula for stochastic differentiation, expresses that, if $u(t, z)$ has continuous partial derivatives $\partial u/\partial t$, $\partial u/\partial z$, $\partial^2 u/\partial z^2$, and the stochastic integral with respect to a (one-dimensional) Brownian motion b

$$c(t) = c(0) + \int_0^t e(\tau) \, dB(\tau)$$

is substituted for z, the composite function $u(t, c(t))$ has stochastic differential

$$du(t, c(t)) = \left(\frac{\partial}{\partial t} + \frac{1}{2} e^2(t) \frac{\partial^2}{\partial z^2} \right) u \, dt + \frac{\partial}{\partial z} u \, dc(t),$$

(2)

and hence

$$Edu(t, c(t)) = E \left(\frac{\partial}{\partial t} + \frac{1}{2} e^2(t) \frac{\partial^2}{\partial z^2} \right) u \, dt.$$

(3)

That formula plays an important role in the derivation of Kolmogorov equations for c, but it suffices for that purpose to use the weaker version (3) instead of (2), as it is easily verified (see, for instance, [21, 3.5].)

The generalization of (2) to plane integrals is not plain [3]. Nevertheless, (3) can be easily generalized, as the following lemma shows.

Lemma 1. If e is a vector-valued nonanticipating functional $e=(e_1, e_2, \ldots, e_k)$ defining $\gamma(x,y)=\int_{S(x,y)} e \, d\beta$, and $u(x,y,z)$ is any bounded function in $C^\infty(S \times R^k)$ ($z=(z_1, z_2, \ldots, z_k)$), then

$$E \square_z u(x,y, \gamma(x,y)) = E \int_S L(e) u \, dx \, dy$$

(4)