The sesquiterpene lactone inulicin has previously been isolated from *Inula japonica* (Japanese inula) [1]. In addition to inulicin, from this plant we have obtained a sesquiterpene lactone with the composition $C_{15}H_{22}O_4$, mp 174–176°C (from ethyl acetate), $\alpha^D_{D}+90.2^\circ$ (c 2.66; ethanol). The NMR spectrum of the new lactone is extremely close to that of inulicin (Fig. 1).

With acetic anhydride in pyridine, the lactone forms an acetate identical with acetylinulicin. Consequently, the second lactone isolated from Japanese inula is deacetylinulicin.

In the preceding communication we gave the structure of inulicin. The results of a subsequent study of the NMR spectrum of inulicin and its NMR spectrum with the addition of the paramagnetic shift reagent Eu(DPM)$_3$ has enabled the conformation of the molecule of this lactone to be established.

By comparing the coupling constants $J_{4,5}$ in inulicin (6.5 Hz) and oxidized tetrahydroinulicin (6 Hz), we have deduced the cis addition of the lactone ring to the seven-membered ring. The small values of the coupling constants $J_{5,6'}$ and $J_{5,6}$ (2.1 and 4.0 Hz) show that the dihedral angles between the H_5, H_6, and the $H_{5'}$, $H_{6'}$ protons are acute. In the spectrum of inulicin with the addition of the paramagnetic salt Eu(DPM)$_3$ (Fig. 2b), the signal of the H_6 protons ($J_{6,6'}=4.0$ Hz) is greatly shifted, which shows the spatial propinquity of the hydroxy group and an H_6 proton (an H_6 proton and the hydroxy group occupy quasi-axial positions in the molecule). A large displacement is also observed for the signal of the methyl group at C_7 which shows the mutual cis arrangement of this methyl group and the hydroxyl. Also in favor of a quasi-axial arrangement of the H_6 proton is the value of the sum of $J_{8,2}+J_{8',2}$ (5 Hz), which is comparatively large for long-range constants.

The averaged values of the coupling constants of the protons of the methyl group at C_7 with the protons at C_6 are different. With the quasi-axial proton (at C_6) the value of the constant J_{6,CH_3} is 1.5 Hz, while...
with the quasi-equatorial proton it is less than 0.5 Hz. Since the hydrogen atoms at C₆ and C₂, and also at C₄ and C₈, occupy analogous positions in the molecule, large values of the coupling constants of the protons at C₆ with the proton at C₂, occupying the quasi-axial position, must be expected. This permits the following structural formulas (la and lb, respectively) to be put forward for inulicin and deacetylinulicin:

Isolation of Deacetylinulicin (lb). The resin from the Japanese inula, after the precipitation of the inulicin [1] [according to TLC in silica gel in the benzene–methanol (9:1) system, two spots with R_f 0.15 and 0.07] was chromatographed on silica gel and eluted with ether. The crystalline total lactones isolated were rechromatographed on silica gel and eluted with benzene. The first fraction gave a white crystalline substance with R_f 0.16, identified as inulicin, and the subsequent fractions gave a white crystalline substance with R_f 0.09, composition $C_{15}H_{22}O_4$ (from ethyl acetate), with mp 174–176°C, $[\alpha]_D^{20} +90.22$ (c 2.66; ethanol), mol. wt. 266. IR spectrum (paraffin oil), ν_{max}, cm⁻¹: 3530 (OH), 1730 and 1658 (γ-methylene in a γ-lactone). UV spectrum: λ_{max} 203 nm (c 12,579).