AFFINITY CHROMATOGRAPHY OF E. coli L-ASPARAGINASE
ON SILICATE SUPPORTS

A. S. Karsakevieh, G. Ya. Migla,
and R. A. Zhagat

One of the methods of isolating enzymes that has recently come into wide use is affinity chromatography, which is characterized by high biospecificity, rapidity, and a high yield of enzyme preparation.

Kristiansen et al. [1, 2] were the first to use affinity chromatography to obtain the enzyme L-asparaginase from E. coli. A cell extract of the enzyme was purified on Sepharose 6B with D-asparagine chemically bound through putrescine or hexamethylenediamine. Unfortunately, the authors did not give either the yield or the degree of purification of the enzyme. In a method for purifying L-asparaginase proposed by Weetall [3], the affinity sorbent was porous glass modified with γ-aminopropyltriethoxysilane with anti-L-asparaginase antibody attached by the thiocyante method. However, the initial bacterial extract purified on an immunosorbent with a degree of purity of 2-7 had a low yield of enzyme activity (6-11%).

We have proposed a method for the affinity chromatography of E. coli L-asparaginase using as support for the affinity sorbent Silochrome C-80 and C-120, and also carbonized calcium metasilicate. As ligand we selected one of the strongest and at the same time simplest inhibitors of L-asparaginase - D-asparagine.

The silicate support was treated with γ-aminopropyltriethoxysilane to introduce an amino group, and then D-asparagine was attached to it by the simple and convenient glutaraldehyde method.

Figure 1 shows the results of the affinity chromatography of L-asparaginase on a column of Silochrome-C-80-D-asparagine. The first fractions, eluted with 0.01 M K phosphate buffer, contained the enzyme to be purified together with ballast proteins not sorbed on the affinity sorbent. Then elution was carried out with a 0.5 M buffer containing 0.1 M D-asparagine. The fraction then collected contained L-asparaginase with a specific activity of 180 IU/mg. Elution with 2 M NaCl gave fraction III, containing a small amount of L-asparaginase and proteins that had obviously been sorbed nonspecifically on the affinity sorbent.

We then made a more detailed study of the possibility of using affinity sorbents for purifying L-asparaginase in bulk. For specific desorption we used both D-asparagine and L-aspartic acid. The results of the experiments are given in Table 1.

As can be seen from Table 1, a higher yield of enzyme was obtained by its desorption with 0.5 M K phosphate buffer containing 0.1 M D-asparagine, although desorption with 0.05 M buffer raised the specific activity of the enzyme.

![Fig. 1. Affinity chromatography of L-asparaginase in a column containing Silochrome-C-80-D-asparagine (the arrows show the composition of the eluting solution).](image-url)
Fig. 2. Electrophoretograms of L-asparaginase: I) initial L-asparaginase product; II) after purification as described previously [4]; III) after affinity chromatography and desorption with 0.5 M K phosphate buffer containing D-asparagine; IV) after affinity chromatography and desorption with 0.05 M K phosphate buffer containing D-asparagine.

TABLE 1. Results of the Purification of L-Asparaginase by Affinity Chromatography in Bulk

<table>
<thead>
<tr>
<th>Silicat support</th>
<th>Amount of sorbent, g</th>
<th>Volume of K phosphate buffer, ml</th>
<th>Time of separation, min</th>
<th>Specific activity before purification, IU/mg</th>
<th>Yield of L-asparaginase, %</th>
<th>Specific activity after purification, IU/mg</th>
<th>Degree of purification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silochrome C-80</td>
<td>0.25</td>
<td>230</td>
<td>5</td>
<td>0.5 M buffer + 0.1 M D-asparagine</td>
<td>90</td>
<td>190</td>
<td>4.8</td>
</tr>
<tr>
<td>Silochrome C-80</td>
<td>0.5</td>
<td>860</td>
<td>10</td>
<td>0.05 M buffer + 0.1 M D-asparagine</td>
<td>60</td>
<td>235</td>
<td>5.8</td>
</tr>
<tr>
<td>Silochrome C-80</td>
<td>0.85</td>
<td>230</td>
<td>5</td>
<td>0.5 M buffer + 0.1 M L-aspartic acid</td>
<td>40</td>
<td>190</td>
<td>4.7</td>
</tr>
<tr>
<td>Silochrome C-120</td>
<td>0.5</td>
<td>460</td>
<td>5</td>
<td>0.5 M buffer + 0.1 M D-asparagine</td>
<td>50</td>
<td>193</td>
<td>4.8</td>
</tr>
<tr>
<td>Carbonized calcium</td>
<td>0.5</td>
<td>860</td>
<td>5</td>
<td>0.05 M buffer + 0.1 M D-asparagine</td>
<td>20</td>
<td>244</td>
<td>6.0</td>
</tr>
</tbody>
</table>

*K phosphate buffer was used.

Very good results were obtained in the purification of L-asparaginase on an affinity sorbent consisting of carbonized calcium metasilicate as support, but the yield of purified enzyme was fairly low.

The L-asparaginase isolated by affinity chromatography was tested for purity by electrophoresis in polyacrylamide gel (Fig. 2) and was compared with the pure enzyme obtained by a method developed by us previously [4].

The proposed method provides the possibility of replacing a multistage purification of L-asparaginase by a single-stage method—affinity chromatography. At the same time, the high stability of the sorbent, its resistance to microflora, and the simplicity of regeneration with 2 M NaCl has enabled it to be used repeatedly for several years.

EXPERIMENTAL

For the purification of L-asparaginase we used the crude enzyme produced industrially with a specific activity of 40 IU/mg. As the support we used Silochrome C-80, Silochrome C-120, and carbonized calcium metasilicate.