From the total alkaloids isolated by chloroform extraction of the epigeal part of *Rhinopetalum stenantherum* a new base has been isolated -- stenanzine -- with mp 203-205°C, $[\alpha]_D^0 -44^\circ$, C$_{27}$H$_{33}$NO$_3$. On the basis of a study of the IR, NMR, and mass spectra of stenanzine and its conversion products the configuration and structure of 3β,23α-dihydroxy-5α-veratr-12-enin-6-one have been established for this alkaloid.

The acetylation of stenanzine with acetic anhydride in pyridine yielded O,O',N-triacetylstenanzine (II), the IR spectrum of which had absorption bands at (cm$^{-1}$) 1740, 1245 (C=O, ester); 1717 (C=O), and 1648 (N--COCH$_3$) and no absorption bands of hydroxy groups. When O,O',N-triacetylstenanzine was saponified in a methanolic solution of caustic soda, N-acetylstenanzine (IIi) was obtained with M$^+$ 471. Its IR spectrum contained absorption bands at (cm$^{-1}$) 3450 (OH); 2970-2860, 1455, 1430 (--CH$_3$; --CH$_2$--); 1717 (C=O); and 1595 (N--COCH$_3$), and the absorption bands of the ester carbonyl group had disappeared.

The reduction of stenanzine with sodium tetrahydroborate led to a dihydro derivative C_{27}H$_{33}$NO$_3$ (IV), M$^+$ 431. Details of the NMR spectra of (I) and (II) are given in Table 1.

A comparison of the NMR and mass spectra of stenanzine and of peimisine (V) (see Table) [3-5] shows that stenanzine belongs to the C-nor,D-homosteroid alkaloids of the jervine group [3-5]. The NMR spectrum of (I) shows the signals from two protons geminal to hydroxy groups at 3.76 ppm (br.s, $W_1/2 = 6$ Hz) and 3.65 ppm ($W_1/2 = 22$ Hz). Consequently, both hydroxy groups have a secondary nature, as was confirmed by the production of O,O',N-triacetylstenanzine. In the mass spectrum of (I), together with the peak of the molecular ion with m/z 429, the peak of an ion with m/z 114 (100%) is also observed, which shows the position of one of the hydroxy groups in ring F [4, 5]. The hydroxy group may occupy one of the two possible positions at C$_{23}$ and C$_{24}$. Of these, from biogenetic considerations, the position at C$_{23}$ is most suitable.

The position of the other secondary hydroxy group and of the carbonyl group was determined by comparing the chemical shifts of the 19-CH$_3$ group of stenanzine (I) and its acetate with those of the 19-CH$_3$ groups in the spectra of peimisine (V) and its acetyl derivative.
The mass spectra of stenanzine and its derivatives confirmed the correctness of the proposed structure and permitted the structural features of similar compounds to be studied.

The fragmentation of stenanzine under electron impact forms the ions given in the following scheme:

\[
\begin{align*}
\text{m/z 115} & \quad \text{m/z 115} \\
\text{m/z 115} & \quad \text{m/z 93} \\
\text{m/z 115} & \quad \text{m/z 115}
\end{align*}
\]