THE STRUCTURE OF DRUPANOL — A NEW PHENOL
FROM Psoralea drupaceae

L. A. Golovina and G. K. Nikonov

Psoralea drupaceae (drupe scurfpea) is a well studied plant; the furocoumarins psoralen and angelicin have been isolated from its fruit and roots [1] and the phytoestrogen drupatsin (drupacin) from the fruit [2].

From the fruit of the plant we have isolated a fraction of phenolic compounds consisting, according to a preliminary evaluation, of six substances with Rf 0.22, 0.36, 0.4, 0.55, 0.77, and 0.8.

By repeated column chromatography on silica gel and vacuum distillation we obtained an individual component (I) with the composition C18H24O, bp 189-190°C/10 mm Hg, [α]D27 +27° (c 1.0; ethanol), d19 0.96105, [n]D 1.5480, which we have called drupanol. It is readily soluble in benzene, carbon tetrachloride, ether, and ethanol, and is soluble in water. Its UV spectrum has a maximum at 263.5 nm (log ε 4.23), which shows the presence of a substituted benzene ring. In the presence of alkali, this maximum undergoes a bathochromic shift by 25.5 nm, with a simultaneous increase in intensity (log ε 4.35), showing the presence of a phenolic hydroxyl.

The IR spectrum of (I) (Fig. 1) shows absorption bands at 1610, 1520, and 820 cm⁻¹ (1,4-substituted aromatic nucleus), 3380-3420 and 1240 cm⁻¹ (phenolic hydroxyl), 840 cm⁻¹ (β-isoprenyl group), and 920 and 980 cm⁻¹ (vinyl group).

The substance has a neutral character, decolorizes solutions of bromine and KMnO₄, forms a brown coloration with diazotized sulfanilamide, and gives no reactions with 2,4-dinitrophenylhydrazine and with ferric chloride. It is readily soluble in a 40% aqueous methanolic solution of caustic potash and on subsequent acidification separates out unchanged. These properties and also its special characteristics show that the oxygen atom is present in the molecule of (I) in the form of a phenolic hydroxyl.

The acetylation of (I) with acetic anhydride in the presence of fused sodium acetate gave an acetate with the composition C20H26O2 in the IR spectrum of which the absorption band of the hydroxy group had disappeared while maxima had appeared at 1770 and 1240 cm⁻¹ of a CH₃COO group attached to an aromatic nucleus.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.
The catalytic hydrogenation of the acetate of (I) formed its hexahydro derivative, C_{19}H_{26}O_{2}, with bp 204-205°C/10 mm Hg.

In the NMR spectrum of (I) (Fig. 2), in the weak field there is a quadruplet with an intensity of 4 H at 7.06 and 6.58 ppm, J 9.0 Hz, due to two pairs of aromatic protons present in ortho positions. A broadened singlet at 6.75 ppm is due to the presence of the phenolic hydroxyl. In the spectrum of the acetate, the singlet disappears and the doublet at 6.58 ppm is shifted downfield by 0.23 ppm. These facts unambiguously show that the aromatic part of the molecule of (I) consists of a p-hydroxyphenyl radical HO-C_{6}H_{4}-. This is attached to a substituent with the composition C_{12}H_{24} having a terpenoid nature, as is shown by the signals of vinyl and olefinic protons in the 4.70-6.14-ppm region and signals of methyl groups at 1.12-1.53 ppm.

Two one-proton singlets at 6.11 and 6.14 ppm are due to the protons of a vinyl group attached to a quaternary carbon atom \(CH_2 \equiv C \). A group of peaks in the 4.70-5.03-ppm region (2H) and the 5.55-6.02-ppm region (1H) is caused by two vinyl protons interacting with an olefinic proton \(CH_2 \equiv CH \equiv C \). The nature of the multiplicity of these signals corresponds to an AB, three-spin system with calculated values of \(\delta \) of 5.72 and 4.92 ppm for A and B, respectively. Two singlets at 1.49 and 1.77 ppm (3H each) and a signal in the 5.0-ppm region superposed on the multiplet of the vinyl protons are due to gem-dimethyl groups at a double bond and to the olefinic protons in a \(C \equiv CH \equiv C \) grouping; a singlet at 1.10 ppm (3H) is due to a methyl group on a tertiary carbon atom \(CH_3 \equiv C \equiv C \).

In the NMR spectrum of the hexahydroacetate of (I), the signals of the five protons on double bonds have disappeared, and in the strong-field region a doublet at 0.85 ppm, J 7 Hz (6H) and a triplet at 0.77 ppm, J 4.5 Hz (3H) have appeared which are due to the protons of two methyl groups on a secondary carbon atom and one on a primary carbon atom.

In the spectrum of the acetate (I), in addition to downfield shifts of the signals of the aromatic protons by 0.13 and 0.17 ppm, the bands of the protons of the vinyl group \(CH_2 \equiv C \) have also shifted, from which it follows that the double bond of the latter is conjugated with the aromatic nucleus HO- C_{6}H_{4}-CH_{2}.

In view of the above discussions, it may be concluded that the side chain of the molecule of (I) must include the artemisane skeleton and that drupanol itself has the structure of 4-(3,6-dimethyl-1-methylene-3-vinylhept-5-enyl)phenol.

The presence of the conjugated vinyl group in (I) and the resulting difficulty in the formation of a quinoid structure explains certain chemical features of the substance isolated — its insolubility in dilute solutions of caustic alkalis and the absence of a reaction with ferric chloride.

EXPERIMENTAL

The IR spectra were taken on a UR-20 spectrophotometer (CHCl_{3}); the NMR spectra on a JNM-4H-100/100 MHz instrument (CCl_{4}), the chemical shifts being given in the \(\delta \) scale from the signal of HMDS taken as 0; the UV spectra on a Hitachi instrument (in ethanol); and the mass spectra on an MKh-1303 instrument. The purities of the substances were determined and the reactions were monitored by the TLC method using a fixed layer of KSK silica gel in the n-hexane-benzene-methanol (5:4:1) system, the spots being revealed with iodine vapor and with a 1% solution of vanillin in conc. sulfuric acid (brown coloration). The elementary analyses corresponded to the calculated figures.