A VARYING COSMOLOGICAL TERM AS A LINK BETWEEN COSMOLOGY AND MICROPHYSICS

(Letter to the Editor)

CORRADO MASSA
Via Fratelli Manfredi 55, 42100 Reggio Emilia, Italy

(Received 30 July, 1993)

Abstract. The Weinberg relation (which connects the Hubble constant H to the mass of a typical elementary particle) is an empirical relation hitherto unexplained. I suggest an explanation based on the Zel'dovich energy tensor of vacuum in a Robertson-Walker universe with constant deceleration parameter, $q = \text{const}$. This model leads to
(a) the Weinberg relation,
(b) a varying cosmological term Λ scaling as H^2,
(c) a varying gravitational constant G scaling as H,
(d) a matter creation process throughout the universe at the rate $10^{-47} \text{ g s}^{-1} \text{ cm}^3$,
(e) a deceleration parameter in the range -1 to $\frac{1}{2}$, which allows a horizon-free universe and makes the law $G/H = \text{constant}$, consistent with the Viking lander data on the orbit of planet Mars.

In a spatially flat, matter-dominated universe with Robertson-Walker (RW) space-time metric the gravitational equations of the general relativity theory with Λ term lead to (Narlikar, 1983)

\[3 \left(\frac{\dot{S}}{S} \right)^2 = 8\pi GU + \Lambda \]

(1)

\[2 \frac{\ddot{S}}{S} + \left(\frac{\dot{S}}{S} \right)^2 = \Lambda \]

(2)

where $\dot{S} = \frac{dS}{dt}$, t is the cosmological time, S is the expansion factor, U is the mean mass density, G is the gravitational coupling. From Equations (1) and (2) one gets

\[\left(\frac{\dot{S}}{S} \right)^2 - \frac{\ddot{S}}{S} = 4\pi GU . \]

(3)

Let us now assume that $S = S(t)$ is given by a power law

\[S \propto t^a , \]

(4)
which gives
\[
\frac{\dot{\mathcal{S}}}{\mathcal{S}} = \frac{a}{t},
\]
\[\tag{5}\]
\[
\frac{\dot{\mathcal{S}}}{\mathcal{S}} = \frac{a(a - 1)}{t^2}.
\]
\[\tag{6}\]
Using Equations (5) and (6), Equations (3) and (2) give, respectively
\[
4\pi G U t^2 = a,
\]
\[\tag{7}\]
\[
\land t^2 = a(3a - 2) = (1 - 2q)(1 + q)^{-2}
\]
\[\tag{8}\]
where \(q = -S\ddot{S}(\dot{S})^{-2}\) is the deceleration parameter. From the energy tensor of the quantum field theory polarized vacuum Zel’dovich finds (Zel’dovich, 1968)
\[
\land = (G m^3)^2 \left(\frac{c}{h^2}\right)^2
\]
\[\tag{9}\]
where \(c\) is the speed of light, \(h\) is the Planck constant, and \(m\) is the mass of a typical elementary particle. From this and from Equations (8) and (5) one gets
\[
m = \left(\frac{H h^2}{c G}\right)^{1/3} \left(3 - \frac{2}{tH}\right)^{1/6},
\]
\[\tag{10}\]
where \(H = \dot{S}/S\) is the Hubble parameter. As \(tH \sim 1\), we have
\[
m \sim \left(\frac{H h^2}{c G}\right)^{1/3}.
\]
\[\tag{11}\]
This is a well-known empirical relation (Weinberg, 1972) that now has a new possible explanation: it is a simple and straightforward consequence of the Zel’dovich quantum approach to \(\land\), in an isotropic flat space expanding with the simple law (4).

The mass-energy conservation law must be dropped. The relativistic quantum field theory, cornerstone of Equation (9), requires \(c\) and \(h\) to be time-independent; then Equations (8) and (9) give
\[
G m^3 \propto t^{-1}.
\]
\[\tag{12}\]
If \(\dot{m} \neq 0\) the mass conservation law is violated at the atomic level; if, however, \(\dot{m} = 0\) then a particle creation process occurs on cosmological scale because Equation (12) gives