THE AMPLITUDE OF THE OPPOSITION EFFECT DUE TO
WEAK LOCALIZATION OF PHOTONS IN DISCRETE
DISORDERED MEDIA

(Letter to the Editor)

M. I. MISHCHENKO and J. M. DLUGACH
The Main Astronomical Observatory of the Ukrainian Academy of Sciences, Kiev, Goloseevo, Ukraine

(Received 7 August, 1991)

Abstract. Weak localization of photons in discrete disordered media is considered as a possible physical
mechanism of the opposition effect of some atmosphereless bodies. The amplitude of the opposition effect
is calculated by using the rigorous vector multiple-scattering theory and the scalar approximation. It is shown
that the scalar approximation can significantly overestimate the amplitude of the opposition effect. Thus,
this approximation should not be used in interpreting the observational data, and some previous results
obtained with this approximation may require substantial revision.

Photometric phase curves of many atmosphereless bodies in the solar system exhibit
a sharp peak when the phase angle approaches zero. A number of physical mechanisms
have been proposed to explain this strong opposition effect which results from the
interaction of light with porous, powder-like surface layers or rough surfaces of the
atmosphereless bodies (see, e.g., Lumme and Bowell, 1981; Hapke, 1986; and reviews
by McGurn, 1990; and Muinonen, 1990). Possible relevance of the so-called weak
localization of photons in discrete disordered media (or coherent back-scatter mecha-
nism) to the opposition effect was first mentioned by Kuga and Ishimaru (1984).
Analogous assumption was then made by Shkuratov (1988, 1991) and Muinonen
(1989). Shkuratov's work is based on the scalar theory of multiple light scattering in a
powder-like medium of independently scattering, randomly positioned discrete
scatterers. An important rigorous result of this scalar theory is that in exactly the
back-scattering direction (i.e., at zero-phase angle), the following identity holds (e.g.,
Ishimaru and Tsang, 1988) as

$$\gamma = \gamma^1 + \gamma^L + \gamma^C \equiv \gamma^1 + 2\gamma^L,$$

where γ is the total back-scattering coefficient in exactly the back-scattering direction,
γ^1 is the contribution of the first-order scattering, γ^L is the contribution of all the other
ladder diagrams, and γ^C is the contribution of all the cyclical (or maximally crossed)
diagrams (for terminology, see Frisch, 1968; and Tsang et al., 1985). Diffusely scattered
intensity (or incoherent background intensity) comes from the sum $\gamma^1 + \gamma^L$, while the
opposition peak comes from the coherent contribution γ^C. Thus, we have for the

amplitude of the opposition effect

\[\tilde{\zeta} = \frac{[\gamma^1 + \gamma^L + \gamma^c]}{[\gamma^1 + \gamma^L]} \equiv \frac{[\gamma^1 + 2\gamma^L]}{[\gamma^1 + \gamma^L]}, \tag{2} \]

where \(\tilde{\zeta} \) is the scalar back-scattering enhancement factor defined as the ratio of the total back-scattered intensity and the incoherent background intensity.

In the vector case (i.e., when the vector nature of light is fully taken into account), Equations (1) and (2) substantially alter. Let \(\mathbf{S} \) be the total Stokes's back-scattering matrix in the common \((I, Q, U, V)\)-representation of polarized light. We write

\[\mathbf{S} = \mathbf{S}^1 + \mathbf{S}^L + \mathbf{S}^C, \tag{3} \]

where (as earlier) \(1 \) denotes the contribution of the first-order scattering, \(L \) denotes the contribution of all the other ladder diagrams, and \(C \) denotes the contribution of all the cyclical diagrams. If we assume that the scattering medium is composed of randomly positioned, independent discrete scatterers and using Saxon's (1955) reciprocity relation for the single-scattering amplitude matrix, one can express the elements of the matrix \(\mathbf{S}^C \) in the elements of the matrix \(\mathbf{S}^L \) (cf. Mishchenko, 1991) as

\[\mathbf{S}^C = \begin{bmatrix} S_{11}^C & S_{12}^C & 0 & 0 \\ S_{12}^C & S_{22}^C & 0 & 0 \\ 0 & 0 & S_{33}^C & S_{34}^C \\ 0 & 0 & -S_{34}^L & S_{44}^C \end{bmatrix}, \tag{4} \]

where

\[S_{11}^C = \frac{1}{2} [S_{11}^L + S_{22}^L - S_{33}^L + S_{44}^L], \quad S_{22}^C = \frac{1}{2} [S_{11}^L + S_{22}^L + S_{33}^L - S_{44}^L], \]

\[S_{33}^C = \frac{1}{2} [-S_{11}^L + S_{22}^L + S_{33}^L + S_{44}^L], \quad S_{44}^C = \frac{1}{2} [-S_{11}^L - S_{22}^L + S_{33}^L + S_{44}^L]. \tag{5} \]

Equations (4) and (5) hold for randomly-oriented particles of any size, shape, and refractive index. From these equations, we have for the vector back-scattering enhancement factor

\[\zeta = \frac{[S_{11}^L + S_{12}^L + S_{12}^C]}{[S_{11}^L + S_{12}^L]} = \]

\[= \frac{[S_{11}^L + S_{12}^L + \frac{1}{2}(S_{11}^L + S_{22}^L - S_{33}^L + S_{44}^L)]}{[S_{11}^L + S_{12}^L]} \tag{6} \]

It is well known (see, e.g., Prishivalko et al., 1984, and references quoted therein) that the Bethe–Salpeter equation under the latter approximation of independent discrete scatterers results in the common vector radiative transfer equation (Chandrasekhar, 1950; Ishimaru and Yeh, 1984). Therefore, by solving this radiative transfer equation numerically, we can calculate the contributions \(\mathbf{S}^1 \) and \(\mathbf{S}^L \) and then determine the back-scattering enhancement factor \(\zeta \) for particular scattering models. Results of such calculations are given in Table I. The calculations have been performed for semi-infinite homogeneous slabs composed of spherical particles whose sizes are specified by the