NON-RADIAL OSCILLATIONS AND CONVECTIVE INSTABILITY OF A POLYTROPE WITH A TOROIDAL MAGNETIC FIELD

N. K. SOOD and S. K. TREHAN

Department of Mathematics, Panjab University, Chandigarh, India

(Received 3 October, 1972).

Abstract. We examine the non-radial modes of oscillation, belonging to spherical harmonics of orders \(l = 1 \) and \(l = 3 \), of a gaseous polytrope with a toroidal magnetic field. We find that a toroidal magnetic field increases the growth rate of convective instability for deformations belonging to the spherical harmonic \(l = 1 \) whereas it decreases the growth rate of convective instability for deformations belonging to the harmonics \(l = 2 \) and \(l = 3 \). The frequencies of the 'acoustic' mode and the 'Kelvin' mode are decreased by the presence of the toroidal magnetic field.

1. Introduction

The non-radial modes of oscillation of a homogeneous compressible fluid sphere were first examined by Pekeris (1939). Chandrasekhar and Lebovitz (1963) used the virial method to study the non-radial oscillations of gaseous masses belonging to the spherical harmonics \(l = 1 \) and 3. They applied the theory to a polytropic gas sphere and determined the critical value of \(\gamma \) at which convective instability sets in. This value was found to be in excellent agreement with the value \((1 + 1/n) \) obtained by an application of the Schwarzschild criterion. In a later paper, Chandrasekhar and Lebovitz (1964) studied the non-radial modes of oscillation of a polytrope belonging to the spherical harmonic \(l = 2 \), using a variational principle. Tassoul (1968) used the virial method to examine the non-radial \((l = 1\) and 3\)) modes of oscillation of a homogeneous gaseous sphere pervaded by a weak magnetic field of Prendergast type. He found that the magnetic field increases the frequencies of the acoustic mode belonging to the spherical harmonic \(l = 1 \) and of the Kelvin mode belonging to the spherical harmonic \(l = 3 \). Convective instability associated with the harmonic \(l = 1 \) can be suppressed only if \(\gamma \) is sufficiently large. For \(\gamma = \frac{4}{3} \) the growth rate of convective instability is actually increased by the presence of the magnetic field. The radial \((l = 0)\) and the non-radial \((l = 2)\) modes of oscillation of a polytrope with a toroidal magnetic field have been examined by Sood and Trehan (1972; this paper will hereafter be referred to as 'Paper I').

We now study the non-radial modes \((l = 1\) and 3\)) of oscillation of a magnetically distorted polytrope whose equilibrium has been discussed earlier in Paper I. The convective instability associated with the harmonic \(l = 1 \) is also examined.

2. The Formulation of the Problem

The linearized equations of motion governing small departures from the state of...
equilibrium can be written in the form

$$\sigma^2 q_\xi = T(\xi),$$

(1)

where $\xi(x,t) = \xi_0(x) \exp(i\sigma t)$ is the Lagrangian displacement applied to a fluid element located at x. If we let δf denote the Eulerian change in the equilibrium value of f due to the displacement ξ, the operator $T(\xi)$ can be written as

$$T(\xi) = \nabla \delta p - q \nabla \delta V - \frac{1}{c} \delta j \times H - \frac{1}{c} j \times \delta H - \frac{\delta q}{q} \left(\nabla p - \frac{1}{c} j \times H\right).$$

(2)

The Eulerian changes in the pressure, density, gravitational potential, magnetic field and current density are

$$\delta p = - \gamma p \nabla \cdot \xi - \xi \cdot \nabla p,$$

(3)

$$\delta q = - \nabla \cdot (q \xi),$$

(4)

$$\delta V = G \int \rho(x') \xi(x') \cdot \nabla |x - x'|^{-1} \, d\tau',$$

(5)

$$\delta H = \nabla \times (\xi \times H),$$

(6)

and

$$\delta j = \frac{c}{4\pi} \nabla \times \delta H.$$

(7)

For the case under consideration, where the magnetic field vanishes at a boundary of the configuration, the variational principle can be written as (cf. Kovetz, 1966)

$$\sigma^2 \int \rho |\xi|^2 \, d\tau = \int \xi \cdot T(\xi) \, d\tau.$$

(8)

It is convenient to scale the magnetic field terms by the quantity $h(=\lambda^2/4\pi^2 G)$ and split the operator $T(\xi)$ into two parts:

$$T(\xi) = -L(\xi) - hM(\xi),$$

(9)

where

$$L(\xi) = - \nabla \delta p + q \nabla \delta V + \frac{\delta q}{q} \nabla p$$

(10)

and

$$M(\xi) = \frac{1}{c} \left[\delta j \times H + j \times \delta H - \frac{\delta q}{q} (j \times H) \right].$$

(11)

Clearly, $L(\xi)$ contains all the effects of a non-magnetic body, whereas $M(\xi)$ contains all the effects due to the magnetic field. Since the magnetic field has been regarded as