ELECTROMAGNETIC RADIATION RECOIL
OF A SYSTEM OF N-CHARGED PARTICLES

G. ANTONACOPOULOS
Department of Astronomy, University of Patras, Greece
and
C. G. KOSTAKIS
Department of Mathematics, Hellenic Air Force Academy, Dekelia, Attica, Greece

(Received 31 August, 1980)

Abstract. We give the radiation of an N-charged particles system associated with the succeeding
terms in the expansion in the inverse powers of the velocity of light of the four vector force on the
material system in a slow motion. We investigate the conditions under which the N-charged particles
system may recoil while emitting electromagnetic radiation. Furthermore, the lowest-order secular
effects in the radiation arise from dipole and quadrupole radiations exactly as it is expected from the
classical theory.

1. Introduction

We consider a slow-motion electromagnetic system of N-charges emitting
electromagnetic waves. Our calculations will be valid for any kind of motion of
N-charges but with the condition that our system remains localized within a
finite volume V. Also we take into account these effects which average to zero
over a long time interval and we denote it with the symbol \(\langle \cdot \rangle \).

The current four-vector satisfies the continuity equation

\[J^i_{\mu} = 0, \]

where here and henceforth the comma means partial differentiation, and

\[J^i = (pc, J), \quad \rho = \sum_{n=1}^{n} e_{i} \delta(r - r_{n}), \quad J = \sum_{n} e_{i} v_{i} \delta(r - r_{n}). \]

In this paper the convention will be adopted of letting Latin indices take the
values 0, 1, 2, 3 and the Greek indices take only the values 1, 2 and 3 referring to
the spatial coordinates.

The electromagnetic field tensor is defined by

\[F_{ik} = \frac{\partial A_i}{\partial x^k} - \frac{\partial A_k}{\partial x^i}, \]

where the meaning of the individual components of the tensor \(F_{ik} \) is easily seen
by substituting the values

\[A_i = (\varphi, -A) \]

Copyright © 1981 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.
with the condition
\[A_i^j = 0 \] (2b)
and \(A_i = g_i^{(0)} A^i, g_{ij}^{(0)} = (1, -1, -1, -1) \). The components of the electric force are \(F_{01}, F_{02}, F_{03} \) and of the magnetic force \(F_{12}, F_{13}, F_{23} \).

2. Flow of Energy and Reaction of the Outgoing Radiation

The four-vector force on the material system is given (cf. Eddington, 1975; Jackson, 1962; Peres, 1962) by
\[K_i = \frac{1}{c} \int F_{ik} J^k \, dV, \] (3)
where the zero component of \(K_i \) represents the total flow of energy, while the three spatial components represent the net thrust on the material system due to the reaction of the outgoing radiation; that is, we denote the mechanical force vector \(K_i \) by
\[K_i = \left(\frac{1}{c} K_0, K_i \right), \] (4)
where it should be noted that
\[K_0 = \int F_{0k} J^k \, dV = \int F_{0\alpha} J^\alpha \, dV; \] (5)
or, simply,
\[K_0 = \int F_{0\alpha} J^\alpha \, dV. \] (6)

Now, for the spatial components, we have
\[K_\alpha = \frac{1}{c} \int F_{\alpha k} J^k \, dV = \frac{1}{c} \int F_{\alpha 0} J^0 \, dV + \frac{1}{c} \int F_{\alpha \beta} J^\beta \, dV. \] (7)
Because of Equation (2), Equation (7), becomes
\[K_\alpha = \frac{1}{c} \int (A_{\alpha, k} - A_{k, \alpha}) J^k \, dV, \quad \alpha = 1, 2, 3. \] (8)
Furthermore, we can put
\[\int (A_{\alpha, k})_k \, dV = 0 \] (9)
(cf. Peres, 1962; Peres and Rosen, 1960) or by use of Equations (1) and (9) it follows that
\[\int A_{\alpha, k} J^k \, dV = - \int A_\alpha J^\alpha \, dV; \] (10)