ON NUMERICAL EVALUATION OF THE H-FUNCTIONS OF TRANSPORT PROBLEMS BY KERNEL APPROXIMATION FOR THE ALBEDO \(0 < \omega \leq 1\)

Z. ISLAM
Dept. of Mathematics, Malda College, Malda, West Bengal, India

and

S. R. DAS GUPTA
Dept. of Mathematics, University of North Bengal, West Bengal, India

(Received 10 May, 1984)

Abstract. Das Gupta represented the H-functions of transport problems for the albedo \(0 < \omega \leq 1\) in the form

\[H(z) = R(z) - S(z) \]

(see Das Gupta, 1977) where \(R(z)\) is a rational function of \(z\) and \(S(z)\) is regular on \([-1, 0]\). In this paper we have represented \(S(z)\) through a Fredholm integral equation of the second kind with a symmetric real kernel \(L(y, z)\) as

\[S(z) = f(z) - \int_0^1 L(y, z)S(y)\,dy. \]

The problem is then solved as an eigenvalue problem. The kernel is converted into a degenerate kernel through finite Taylor’s expansion and the integral equation for \(S(z)\) takes the form:

\[S(z) = f(z) - \sum_{j=1}^{\infty} \int_0^1 F(y)S(y)\,dy \]

(which is solved by the usual procedure) where \(\lambda_j\)’s are the discrete eigenvalues and \(F_j\)’s the corresponding eigenfunctions of the real symmetric kernel \(L(y, z)\).

Das Gupta obtained the Chandrasekhar’s H-function \(H(z)\) in the form (see Das Gupta, 1977, Equations (61), (62), (65), (98)) which separates the pole from the branch points of \(H(z)\) as

\[H(z) = R(z) - S(z), \]

where

\[R(z) = \begin{cases} \frac{(A_0 + H_0z)(K + z)}{K + z} & \text{when } 0 \leq \omega < 1, \\ h_1z + h_0 & \text{when } \omega = 1, \end{cases} \]

(2a)

(2b)

\[S(z) = \sum_{s=1}^{n} \int_{E_s} \frac{P_s(x)}{x + z} \,dx \]

\[= \int_0^{\lambda_s} \frac{P(x)\,dx}{x + z}, \quad E_s = [\lambda_s, \lambda_{s+1}], \]

(3)

\[P(x) = P_s(x) \quad \text{when } x \in E_s, \quad s = 1, 2, \ldots, n, \]

(4)

\[P_s(x) = \phi_s(x)/H(x), \]

(5)

defined on \(E_s\),
\[\phi_s(x) = \left(\frac{1}{\pi} \right) U_s(x)/[T_s^2(x) + U_s^2(x)] , \] (6)

\[T_s(x) = F_1(x) - \sum_{p=1}^{s} Y_p(x) x \ln \left[(\lambda_p + x)/(\lambda_p - x) \right] - \sum_{p=s+1}^{n} Y_p(x) x \ln \left[(x + \lambda_p)/(x - \lambda_p) \right] , \] (7)

\[U_s(x) = \pi \sum_{p=1}^{s} x Y_p(x) , \quad U_1(x) = \pi x Y_1(x) , \] (8)

\[F_1(x) = 1 - \sum_{p=1}^{\lambda_1} 2x^2 \int_{0}^{\lambda_p} [Y_p(t) - Y_p(x)] \, dt/(x^2 - t^2) , \] (9)

\[A_0 = (1 + p_{-1}) K , \] (10)

\[p_{-1} = \int_{0}^{\lambda_1} \left[P(x)/x \right] \, dx , \] (11)

\[H_0 = (1 - \omega)^{1/2} , \quad h_1 = (1/2)^{1/2} , \quad h_0 = h_1 \left[(\gamma_2/\gamma_1) + q_0 \right] , \] (12)

\[\gamma_r = \sum_{s=1}^{n} \int_{0}^{\lambda_s} x^r Y_s(x) \, dx \] (12a)

and (see Das Gupta, 1974, Equation (28b))

\[q_0 = \sum_{p=1}^{n} \int_{E_p} Q_p(x) \, dx , \] (13)

\[Q_p(x) = \left(\frac{1}{\pi} \right) \tan^{-1} \left[\frac{v_p(x) - u_p(x)}{1 + v_p(x) u_p(x)} \right] , \] (14)

\[v_r(x) = 2U_r(x)/L_r(x) , \quad u_r(x) = U_r(x)/T_r(x) , \] (15)

\[L_r(x) = F_2(x) - \sum_{p=1}^{r} Y_p(x) \ln \left[(\lambda_p - x)/x \right] - \sum_{p=s+1}^{n} Y_p(x) x \ln \left[(x - \lambda_p)/x \right] , \] (16)

\[F_2(x) = 1 - \sum_{s=1}^{n} 2x \int_{0}^{\lambda_s} [Y_s(t) - Y_s(x)] \, dt/(x - t) . \] (16a)