Anomalous Specific Heat of Solid Deuterium
Below 0.6 K*

R. J. Roberts and J. G. Daunt

Cryogenics Center, Stevens Institute of Technology, Hoboken, New Jersey

(Received February 20, 1974)

An anomaly has been observed in measurements of the specific heat at saturated vapor pressure C_s of pure, solid D_2 of low para-D_2 concentration below 0.6 K. The new anomaly has been interpreted as evidence for the significance of electric quadrupole–quadrupole interaction between next-nearest-neighbor pairs of para-D_2 molecules.

We have extended our previous measurements1 of the specific heat C_s of pure solid D_2 with para-D_2 concentration of approximately 3.5% to temperatures below 0.6 K. The results are shown in Fig. 1, which plots the specific heat C_s at saturated vapor pressure, against temperature. In Fig. 1 the points denoted by squares give the new data, which extend down to 0.25 K. The new data were taken with a calorimeter system similar to that described previously,1 cooled below 1 K by a 3He dilution refrigerator.

In the temperature range 0.6 K–3 K the new results confirm the previous ones1 and can be interpreted in terms of (a) a lattice term $C_{lat} = AT^3$, with $A = 1.32 \text{ mJ/mole-K}^4$ corresponding to a Debye characteristic temperature $\theta_D = 114 \text{ K}$, and (b) an excess specific heat C_E having a broad maximum about 1.4 K.

The excess specific heat C^E is shown in Fig. 2, in which the points marked by squares are the new data. In the temperature range 0.9–5 K, C^E can be fully explained as being due to the electric quadrupole–quadrupole (EQQ) interaction between nearest-neighbor (nn) clusters (pairs and triples) of para-D_2 molecules. This interpretation has been fully discussed in our previous paper,1 and the “fixed pairs and triples model” described there leads to an excess specific heat C^E_I as shown in Fig. 2. Clearly in the temperature range 0.9–5 K this model based on EQQ interaction with nn pair and triple clusters reflects the data adequately.

*Work supported by a Grant from the N.S.F. and contracts with O.N.R. and D.O.D. (Themis Program).
Below 0.9 K, as is evident from Fig. 2, the experiments cannot be described by the simple model referred to above. The experimental data indicate that below 0.6 K, C_s begins to rise again and C_s must go through a maximum at a temperature below 0.3 K.

To interpret these new lower temperature data, we have extended the EQQ cluster interaction models to include next-nearest-neighbor (nnn) clusters. In the calculation of this extended model the probability of finding a para-D$_2$ molecule as a member of an isolated nearest-neighbor (nn) pair of para-D$_2$ molecules in a hcp lattice turns out to be $P_p = 12x(1 - x)^2$, where x is the para-D$_2$ concentration, as set out by Kreitman and Barnett. This is different from that used in the earlier model, which set $P_p = 12x(1 - x)^{18}$.