We investigated the kinetics* of the isothermal $\alpha \rightarrow \gamma$ transformation in alloys YuNDK24, YuND35T5, and YuNDK40T7 (Table 1), the chemical composition of α_7 phase, and the variation of the magnetic properties with the treatment conditions and the amount of α_7 phase.

We tested samples 12 \times 12 \times 60 mm with an equiaxed polyhedral structure, which were obtained by casting in molds prepared by investment casting. Metallographic analysis was conducted on transverse sections at a distance of 15 mm from the end of the sample. The amount of α_7 phase was determined by Glagolev's method [1] (1600 points on the sample) with the PMT-3 apparatus. The magnetic properties of the ground samples were measured in the Magnit-2 apparatus with automatic recording of hysteresis loops. The chemical composition† of the α_7 phase was determined by microprobe analysis with the CAMECA MS-46 analyzer.

Control samples of each alloy were subjected to thermomagnetic treatment in sets of four and tempered by the technique commonly used. These samples contained no α_7 phase, and the magnetic properties of each alloy were optima (Table 2 and Fig. 1a). All other samples were subjected to isothermal holding between the operations of homogenizing and thermomagnetic treatment in order to obtain different amounts of α_7 phase (Table 2 and Fig. 1a).

Alloy YuNDK24. The maximum formation rate of γ phase in alloy YuNDK24 was observed at 1050-1150°C. The transformation practically ceases after holding for 60 min (Fig. 2a). The transformation practically ceases after holding for 60 min (Fig. 2a). At 900-850°C the transformation rate decreases sharply. The α solid solution is least stable at 1150°C — the $\alpha \rightarrow \gamma$ transformation begins after 3 min. With decreasing temperatures the incubation period increases, and at 850-900°C amounts to hours. The temperature limits of the two-phase region can be taken as 850 and 1200°C. At these temperatures the amount of γ phase is less than 1% after holding for 60 min and is \sim2% after 100 h. The temperature range of 1100-1050°C corresponds to the maximum quantity of γ phase, which reaches \sim42% in the YuNDK24 alloy investigated.

The distribution of α_7 phase in the microstructure is due to the amount of phase located in the grain boundaries in the initial period in the form of a narrow band or needles forming a dense Christmas tree or fringe on one side of the boundary. With increasing holding times the amount of α_7 phase increases due to elongation of the needles (Fig. 3a). Larger amounts of α_7 phase lead to the appearance of isolated

*V. B. Patt, T. I. Nosova, and A. S. Chernov assisted with the experiments.
† Determined under the direction of G. N. Ronami.

TABLE 1

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Co</th>
<th>Ni</th>
<th>Al</th>
<th>Cu</th>
<th>Ti</th>
<th>Si</th>
<th>S</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>YuNDK24</td>
<td>28.3</td>
<td>13.5</td>
<td>7.8</td>
<td>9.4</td>
<td>0.4</td>
<td>0.12</td>
<td>0.021</td>
<td>0.014</td>
</tr>
<tr>
<td>YuNDK35T5</td>
<td>34.6</td>
<td>14.5</td>
<td>7.1</td>
<td>3.96</td>
<td>5.1</td>
<td>0.09</td>
<td>0.023</td>
<td>0.018</td>
</tr>
<tr>
<td>YuNDK40T7</td>
<td>38.7</td>
<td>12.2</td>
<td>6.9</td>
<td>2.92</td>
<td>0.7</td>
<td>0.10</td>
<td>0.012</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 47-54, April, 1975.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.
precipitates within the grains, but the distribution of the phase through the bulk remains uneven for a long time. Only a large quantity of α phase fills the bulk more evenly.

The chemical composition of α phase differed from that of the matrix (Fig. 4). As compared with the matrix, the α phase is enriched in iron and impoverished in aluminum, nickel, and cobalt. The lower the temperature at which the γ phase was formed, the greater the difference in composition. The isothermal holding time has almost no effect on the composition of α phase.

Fig. 1. Variation of magnetic properties of alloy YuNDK40T7 with isothermal holding temperature and time (a) and amount of α phase formed at different temperatures in alloy YuNDK24 (b). ■ properties of control samples.

Fig. 2. Diagrams of isothermal $\alpha \rightarrow \gamma$ transformations in alloys YuNDK24 (a), YuNDK35T5 (b), and YuNDK40T7 (c). The numbers on the curves indicate the degree of transformation (%). The dashed lines are extrapolations to points of 0% phase and cooling times of control samples down to the temperatures of the isotherms.