(A) In this paper I present a realistic semantics for first-order modal predicate-logic that differs in two respects from the standard Tarski–Kripke approach.

Firstly, the background theory is not axiomatic set theory supplemented by the concept possible world, but a theory of basic intensional entities: propositions, properties and relations;¹ this theory will here be developed only as far as it is necessary for the semantics of an elementary language, that is, the only properties and relations considered are properties of, and relations between individuals. In standard (extensional) ontology intensional entities are reduced to sets and possible worlds (and individuals; they are complex sets involving in their specification possible worlds and/or individuals);² in intensional ontology, however, sets (of individuals) are reduced to properties (of individuals), and possible worlds to propositions. The latter reduction is more natural than the former, and the inveterate skepticism against intensional entities as basic ("What, after all, are these things?? When are they identical??") can be dispelled. For intensional ontology is completely on a par with set theory. All we really know about sets is stated in the axioms of set theory; all we really know about properties, relations and propositions is stated in the axioms of intensional ontology; the latter axioms are no less precise than the former, and identity conditions for intensional entities are not left unclear.

Secondly, the basic semantic concept is different; expressions do not have extensions relative to possible worlds in some interpretation, but absolutely intend intensions. Sentences intend propositions, monadic predicates intend properties, polyadic predicates intend relations, individual-constants intend individuals. To intend is not to mean; we can, however, think of the intension of an expression as an approximation to its meaning, such that expressions that mean the same always intend the same, but not vice versa (while expressions that intend the same have the same extension, but not vice versa).³ The central act (so to speak) of my semantics is not the stating of a definition of the concept being an interpretation of language L, but rather the stating of semantic

axioms that show how the intensions of more complex expressions of L are determined by the intensions of simpler expressions of L that are their parts. (All of the axioms having to do with logical operators are equations; by repeated application of the axioms (the intension of) each sentence of L can be completely analyzed.) Of course, the definition of logical truth will look rather different on this approach. (In fact, four semantic concepts of truth will be defined for L: truth, simpliciter and relative, ontological truth and logical truth.)

The aim of this paper is not to point out problems that the standard approach to modal semantics cannot deal with, while the non-standard one can; it is rather to show (especially in the semantical part) that the same problems the standard approach successfully deals with can be solved in a rather different manner, which, on the whole, seems to me to be more satisfactory intuitively and to be more in line with philosophical tradition than the usual way. But even if it should seem otherwise to the reader, the gain of knowledge obtained by going a different route to the same summit ought not to be despised.

(B) I begin by stating the background theory of basic intensional entities. Like set theory it is a first-order theory. All quantifiable variables are of one kind; they can replace any singular term, and no other expression.

1. Expressions Specific to the Theory

$Z^0(\tau)$ means τ is an individual;

$Z^1(\tau)$ means τ is a proposition;

$Z^{0,0}(\tau)$ means τ is a property (of individuals);

$Z^{0,0,0}(\tau)$ means τ is a triadic relation (between individuals);

$(\tau \text{ is a proposition})$ means proposition τ is (intensional) part of proposition τ';

$(\tau, \tau_1, \ldots, \tau_n)$ means the proposition which is the saturation of τ by τ_1, \ldots, τ_n (equivalently the proposition which is the concatenation of τ with τ_1, \ldots, τ_n);

$\lambda \sigma \tau[\sigma]$ means the property which results from $\tau[\sigma]$ by the extraction of $\sigma[\tau]$ is a singular term; τ not in $\tau[\sigma]$);

$\lambda \sigma_1 \ldots \sigma_n \tau[\sigma_1, \ldots, \sigma_n] (2 \leq n)$ means the n-adic relation which results