Electromagnetic Effects in Unified Field Theory

Wang Li

Anshan Institute of Iron and Steel Technology, Anshan, The People's Republic of China

Received October 29, 1980

In unified field theory we derive expressions for the electric current densities \(j \) and \(\rho \). We show that \(j \) and \(\rho \) depend on the intensities \(E \) and \(H \); \(E \) and \(H \) possess a common limit \(1/\alpha \); and Coulomb’s law is not compatible with the unified theory.

1. PREPARATIONS

A. Einstein and B. Kaufman’s work (1954) on the eigenvalues of \(g_{ik} \) is our starting point. They introduce a system of reference connected with the “diagonal system” of \(g_{ik} \) (both are inertial systems) by a Lorentz transformation and give a matrix for \(g_{ik} \) in their system. E–K’s matrix is unfilled, which is inconvenient for our work.

In preparation, we first transform E–K’s matrix to a filled matrix of \(g_{ik} \) by a general Lorentz transformation. Next we find the contravariant components \(g^{ik} \) of our matrix, and connect \(g_{ik} \) with the intensities \(E \) and \(H \).

In the unified theory and in the inertial system moving relatively to E–K’s system with uniform velocity, we give a filled matrix for \(g_{ik} \) as

\[
(g_{ik}) = \begin{pmatrix}
1 & g_{12} & g_{13} & g_{14} \\
-g_{12} & 1 & g_{23} & g_{24} \\
-g_{13} & -g_{23} & 1 & g_{34} \\
-g_{14} & -g_{24} & -g_{34} & 1
\end{pmatrix} \equiv \begin{pmatrix}
1 & U_z & -U_y & -V_x \\
-U_z & 1 & U_x & -V_y \\
U_y & -U_x & 1 & -V_z \\
V_x & V_y & V_z & 1
\end{pmatrix}
\]

(1)

and

\[
U = U_x i + U_y j + U_z k, \quad V = V_x i + V_y j + V_z k,
\]
which is derived from E–K's matrix

\[
(g'_{ik}) = \begin{pmatrix}
1 & g'_{12} & 0 \\
-g'_{12} & 1 & 0 \\
0 & 1 & g'_{34} \\
\end{pmatrix}
\]

by a general Lorentz transformation.

Next, from (1), using \(U \) and \(V \) for brevity, we derive the contravariant components \(g^{ik} \) as

\[
g^{11} = \frac{1}{g} \left[-1 + \mathbf{V}^2 - \left(\mathbf{U}_x^2 + \mathbf{V}_x^2 \right) \right], \quad g^{22} = \frac{1}{g} \left[-1 + \mathbf{V}^2 - \left(\mathbf{U}_y^2 + \mathbf{V}_y^2 \right) \right]
\]

\[
g^{33} = \frac{1}{g} \left[-1 + \mathbf{V}^2 - \left(\mathbf{U}_z^2 + \mathbf{V}_z^2 \right) \right], \quad g^{44} = \frac{1}{g} \left[1 + \mathbf{U}^2 \right]
\]

\[
g^{12}, g^{21} = \frac{1}{g} \left[\mp \mathbf{U}_z \mp (\mathbf{U} \cdot \mathbf{V}) \mathbf{V}_z - (\mathbf{U}_x \mathbf{U}_y + \mathbf{V}_x \mathbf{V}_y) \right]
\]

\[
g^{31}, g^{13} = \frac{1}{g} \left[\mp \mathbf{U}_y \mp (\mathbf{U} \cdot \mathbf{V}) \mathbf{V}_y - (\mathbf{U}_x \mathbf{U}_z + \mathbf{V}_x \mathbf{V}_z) \right]
\]

\[
g^{23}, g^{32} = \frac{1}{g} \left[\mp \mathbf{U}_x \mp (\mathbf{U} \cdot \mathbf{V}) \mathbf{V}_x - (\mathbf{U}_y \mathbf{U}_z + \mathbf{V}_y \mathbf{V}_z) \right]
\]

\[
g^{14}, g^{41} = \frac{1}{g} \left[\mp \mathbf{V}_z \mp (\mathbf{U} \cdot \mathbf{V}) \mathbf{U}_z + (\mathbf{U}_y \mathbf{V}_x - \mathbf{U}_x \mathbf{V}_y) \right]
\]

\[
g^{24}, g^{42} = \frac{1}{g} \left[\mp \mathbf{V}_y \mp (\mathbf{U} \cdot \mathbf{V}) \mathbf{U}_y + (\mathbf{U}_x \mathbf{V}_z - \mathbf{U}_z \mathbf{V}_x) \right]
\]

\[
g^{34}, g^{43} = \frac{1}{g} \left[\mp \mathbf{V}_x \mp (\mathbf{U} \cdot \mathbf{V}) \mathbf{U}_x + (\mathbf{U}_y \mathbf{V}_z - \mathbf{U}_z \mathbf{V}_y) \right]
\]

where

\[
g = \det(g_{ik}) = - \left[1 + (\mathbf{U}^2 - \mathbf{V}^2) - (\mathbf{U} \cdot \mathbf{V})^2 \right],
\]

Einstein defines the tensor density \(\alpha_{ik} = -g^{1/2}g_{ik} \) and suggests \(g^{ik} \) is the intensity Einstein (1955). From this and (2), we get

\[
\alpha E = g^{23} i + g^{31} j + g^{42} k = \frac{1}{(-g)^{1/2}} [\mathbf{U} - (\mathbf{U} \cdot \mathbf{V}) \mathbf{V}]
\]

\[
\alpha H = g^{14} i + g^{24} j + g^{34} k = \frac{1}{(-g)^{1/2}} [\mathbf{V} + (\mathbf{U} \cdot \mathbf{V}) \mathbf{U}]
\]