Spatial Extension of Quantum Gravitational Particles in $R^4 \times K^N$

Gerald Rosen

Received April 22, 1988

It is observed that the magnitude relation $ma^2 = \hbar \rho/c$ holds if the non-Euclidean incremental spatial volume associated with a fundamental particle of mass m and radius a is characteristically quantum gravitational in a Kaluza-Klein or superstring $R^4 \times K^N$. Here R^4 is the four-dimensional Riemannian space-time of general relativity and K^N is a small-scale, compact, N-dimensional space of characteristic quantum gravitational volume l_N^N, with $l_N = (\hbar G/c^3)^{1/2} = 1.61 \times 10^{-33}$ cm denoting the Planck length. For the electron and electron neutrino (assumed to possess nonzero mass bounded empirically by $m_\nu < 30$ eV) the derived magnitude relation $a = (\hbar \rho/mc)^{1/2}$ yields the estimates $a_e = 2.5 \times 10^{-22}$ cm and $a_{\nu_e} = 3.3 \times 10^{-20}$ cm, spatial extensions which may be detectable by way of fine-scale effects in SSC experiments.

1. INTRODUCTION

Recently it has been shown (Rosen, 1987) that the Einstein field equations

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

(1)

are equivalent to the physicogeometric statement: A local spherical region of radius r containing energy with moment of inertia I has the physical volume

$$V(r) = (4\pi/3)(r^3 + GI)$$

(2)

in an associated free-falling (nonrotating, timelike geodesic) frame of reference. Here Newton's constant is $G = 7.41 \times 10^{-29}$ cm/g in a system of physical units such that the speed of light in vacuum equals unity ($c = 1$). In particular, for a uniform spherical distribution of radius a and total energy

1Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104.
m, one has $I = \frac{1}{2}ma^2$; therefore, the non-Euclidean incremental spatial volume $\Delta V = V(a) - 4\pi a^3/3$, i.e.,

$$\Delta V = (8\pi/15)Gma^2$$ \hspace{1cm} (3)

is attributed to a mass m of radius a, according to general relativity and formula (2). Conversely, if (2) or (3) is valid for any spherical region of arbitrary radius containing a uniform distribution of energy in a free-falling frame of reference, then the gravitational field equations (1) must hold through the space-time region. The non-Euclidean character of physical space, as prescribed by general relativity, is expressed in an equivalent quantitative fashion by (3).

2. QUANTUM GRAVITATIONAL PARTICLES IN $R^4 \times K^N$

In contemporary studies of the Kaluza-Klein and superstring models (Lovelace, 1984; Fradkin and Tseytlin, 1985; Ne'eman and Sijacki, 1986), space-time is viewed as a $(4+N)$-dimensional manifold with the structure $R^4 \times K^N$, the direct product of the four-dimensional Riemannian space-time of general relativity and a small-scale, compact, N-dimensional space of characteristic quantum gravitational volume l_p^N, where $l_p = (\hbar G)^{1/2} = 1.61 \times 10^{-33}$ cm is the Planck length. The physical distinction between the three spatial dimensions of R^4 and the N spatial dimensions of K^N is likely to become indefinite on a scale of order l_p, due to quantum gravitational fluctuations or a possible discrete aspect to space-time that underlies spatial dimensionality [see, for example, Bombelli et al. (1987) and work cited therein]. If all $N+3$ spatial dimensions enter on the same footing at the smallest physical scales, then the small-scale equivalence of the $N+3$ spatial dimensions suggests that the non-Euclidean incremental $(N+3)$-dimensional spatial volume attributed to a fundamental particle of mass m and radius a is also characteristically quantum gravitational in $(a \tau = \text{const} \text{ hypersurface of})$ $R^4 \times K^N$. If this quantum gravitational feature is indeed manifest at the smallest spatial scales, it follows that the $(N+3)$-dimensional volume must be of order l_p^{N+3} and the magnitude relation $\Delta V \sim l_p^3$ must hold for the quantity (3) in R^4. Thus, such a characteristically quantum gravitational particle in $R^4 \times K^N$ requires the magnitude relation $Gma^2 \approx l_p^3$, or equivalently

$$ma^2 \approx \hbar l_p$$ \hspace{1cm} (4)

to hold as a quantum constraint on the product of the particle mass times its radius squared.

For the electron and electron neutrino (assumed to possess nonzero mass bounded empirically by $m_e \approx 30$ eV) the spatial extension estimate