Abstract

The theoretical aspect of CP-violation is reviewed. The K_S and K_L states, the unitarity relation, parametrization and analysis, the electric dipole moment of the neutron, η asymmetry and C noninvariance in $\eta_{3\pi}$ are all discussed. Then five theoretical models concerning neutral $K \to 2\pi$ are dealt with.

1. Introduction

Although the possibility of CP violations was previously discussed theoretically, the discovery of the $K_L \to 2\pi$ decay (i.e. $K_L \to \pi^+\pi^-$) by Christensen et al. (1964) started the discussions of the topic in earnest. Experimentally (Barash-Schmidt et al., 1969) we observe the following nonleptonic weak decays of the neutral K system:

\[
\begin{align*}
\pi^+\pi^- & \quad (68.1 \pm 1.1)\% \\
\pi^0\pi^0 & \quad (31.6 \pm 1.1)\% \\
\pi^0\pi^0 & \quad 0(2.5 \pm 0.7)\% \\
\pi^+\pi^- & \quad (28.1 \pm 0.8)\% \\
\pi^+\pi^- & \quad (0.157 \pm 0.004)\% \\
\pi^0\pi^0 & \quad \text{(uncertain)}
\end{align*}
\]

The neutral K system $\to \begin{cases}
\tau_s = 0.874 \times 10^{-10} \text{ sec} \\
\tau_L = 5.30 \times 10^{-8} \text{ sec}
\end{cases}$

Here we notice the two definitely distinct mean lives τ_s and τ_L for the neutral K system.

According to the CPT theorem (or Lüder's theorem), 'If a theory of interacting fields obeys the Wightman postulates and is invariant under the restricted Lorentz group (i.e. without any discrete element like P or T) then it will be invariant under CPT'. If we assume CPT invariance (which we shall do throughout this review), a consequence of the theorem

\[\dagger\] Work supported in part by the United States Atomic Energy Commission.
\[\dagger\dagger\] Present address: Department of Physics, Saginaw Valley College, University Center, Michigan 48710.
is that the observable mass and lifetime of a particle are always exactly the same as those of the corresponding antiparticle.

Thus the parent states of the two different lifetimes τ_S and τ_L cannot be K^0 or \bar{K}^0. Note that since the system is neutral its decay is indirectly observed. We measure the energy-momentum of the decay product and measure the quantum numbers of the products system instead of the neutral K system. Therefore, we name the short-lived and long-lived parent states as K_S and K_L, respectively, and have

$$
\begin{align*}
K_S &\rightarrow \begin{cases}
\pi^+ \pi^-, & +1 \\
\pi^0 \pi^0, & +1 \\
\pi^0 \pi^0 \pi^0, & -1 \\
\pi^+ \pi^- \pi^0, & -1 \\
\pi^+ \pi^-, & +1 \\
\pi^0 \pi^0, & +1
\end{cases} \\
K_L &\rightarrow \begin{cases}
\pi^+ \pi^-, & +1 \\
\pi^+ \pi^-, & +1
\end{cases}
\end{align*}
$$

Here we have used the following conventions:

$$
C |K^0\rangle = |\bar{K}^0\rangle \\
CP |K^0\rangle = -|\bar{K}^0\rangle \\
CP |\pi^0\rangle = -|\pi^0\rangle \\
CP |\pi^+ \pi^-\rangle = +|\pi^+ \pi^-\rangle \quad \text{in the center-of-mass system.}
$$

In the decay modes shown in (1.2), if $K_L \rightarrow 2\pi$ then the K_S and K_L states may be assigned $CP = +1$ and -1, respectively, and CP conservation holds. But the K_L decays show a clear CP violation.

2. K_S and K_L States

Now we can ask the following question: What are the K_S and K_L states?† In strong interactions (H_s), the hypercharge Y is conserved, i.e. $\Delta Y = 0$, and $|K^0\rangle$ and $|\bar{K}^0\rangle$ are eigenstates of H_s. Therefore, transitions $K^0 \leftrightarrow \bar{K}^0$ are not allowed. Thus the two particles K^0 and \bar{K}^0 are quite distinct, and we can tell definitely which of the two particles is produced. Since weak interactions (H_w) do not conserve hypercharge, as soon as the weak interaction is turned on, the hypercharge is no longer a good quantum number (i.e. $\Delta Y \neq 0$). Thus the following is possible:

$$
K^0 \rightarrow \pi^+ \pi^- \rightarrow \bar{K}^0
$$

and K^0 and \bar{K}^0 become degenerate. $|K^0\rangle$ and $|\bar{K}^0\rangle$ are no longer different states, but the combinations of the two states may be the eigenstates of the mass operator.

† For the discussions of K_S and K_L states, see, for example, Gasiorowicz, S. (1966). *Elementary Particle Physics*. John Wiley, New York,