Torsional oscillator measurements of 3He-4He mixtures confined in aerogel show evidence of a well defined phase separation region. This region is detached from the superfluid transition line, opening up a region of miscible superfluid mixture at high 3He concentration.

PACS numbers: 67.60-g, 67.40-w, 67.40.Yv

Recent experiments studying the nature of superfluid transitions of 4He$^{1-3}$ and liquid-vapor phase separation of 4He4 and N$_2^5$ entrained in porous silica aerogel found intriguing results that are distinct from that found with other porous media. Silica aerogel is a highly porous glass consisting of a tenuous network of SiO$_2$ strands interconnected at random sites.6 The silica network is formed via a sol-gel process. In order to preserve the delicate structure, the solvent remaining from the gelation procedure is removed at a temperature that is above its critical temperature. The open volume fraction of the aerogel ranges from 0.85 to 0.998; in other words, solid silica constitutes from 15 to 0.2 percent of the total available volume.7 Vapor pressure isotherm measurements indicate an extremely large surface area, typically 580 to 800 m2/gm.9 If we combine the surface area and density information, the silica network in aerogel can be modeled as thin strands of roughly 30Å in diameters. The random and near fractal-like network,9 the narrow strand diameter and the extreme high porosity are some of the properties that separate light aerogel from other porous systems.

In spite of the random environment provided by aerogel, an exceedingly sharp superfluids transition is found for the entrained 4He. Whereas the transition temperature T_c is depressed from the bulk lambda temperature T_λ by only several millikelvins, the nature of the transition for 4He in aerogel of 0.94 and 0.91 open volume fraction is completely altered.$^{1-3}$ If the temperature dependence of the superfluid fraction ρ_s/ρ near T_c is expressed as a simple power law of the form

$$\rho_s/\rho = [(T_c - T)/T_c]^\zeta$$ \hspace{1cm} (1)$$

then the critical exponent ζ is found to assume a value of 0.81, significantly larger than 0.672, the exponent found for bulk 4He. The transition is extremely sharp in that the power law as shown in equation (1) is found to provide a very good
description of the ρ_s/ρ data well into a reduced temperature $t = (T_c - T)/T_c$ of 10^{-4}. There is yet no complete, quantitative understanding of the superfluid density and the heat capacity results of 4He in aerogel. It is generally agreed that the non-bulklike critical exponent is a consequence of the correlated quenched impurities in the form of the silica structure.\(^{10}\)

Measurements were also made of 4He and N_2 confined in aerogel near their respective liquid-vapor critical temperatures. Heat capacity and vapor pressure isotherm measurements found evidence of liquid-vapor-like phase separation of 4He in aerogel that terminates at a critical point that is 31 mK below the bulk value at 5.198K.\(^4\) A liquid-vapor phase coexistence region and a critical point of N_2 in aerogel were found via a slight scattering experiment.\(^5\) Due to the strong attraction of N_2 and 4He to the silica strands, the "vapor" phase is likely to consist of the vapor and a thin adsorbed liquid film coating the silica strands. The light scattering experiment shows that the linear dimension of the vapor and liquid domains remain on the order of the wavelength of light (instead of macroscopic dimension) throughout the entire two-phase coexistence region. The liquid-vapor coexistence region in the $\rho - T$ plane of 4He and N_2 in aerogel of 0.94 open volume fraction near their respective T_c are shown in Fig. 1.

This figure shows that the coexistence regions for both 4He and N_2 in aerogel at temperatures not far below T_c are substantially narrower than that of the bulk system. For 4He in aerogel the width at a specific reduced temperature is fully fourteen times smaller than that of bulk. For N_2 the difference is 2.6 times. Recently, vapor pressure isotherm measurements found evidence that the narrow coexistence region shown in Fig. 1 for 4He in aerogel widens below 4.9K and becomes comparable in width to that of the bulk liquid-vapor coexistence region.\(^{11}\)

In this paper we report the result of a systematic torsional oscillator study of 3He-4He mixture entrained in aerogel of 0.98 open volume fraction. Although the silica strands of the aerogel occupy only 2% of the total available volume, the effect on the 3He-4He phase diagram is profound. In bulk mixtures, the superfluid transition temperature decreases with increasing 3He concentration and terminates at the tricritical point at $T = 0.872K$ and $X_3=0.669$. Here $X_3 = N_3(N_3 + N_4)^{-1}$ is the (molar) 3He concentration with N_3 and N_4 being respectively the number of 3He and 4He atoms in a mixture. Below the tricritical point the mixture phase separates into 3He and 4He rich regions (see Fig. 2)

In spite of the random environment, mixture confined in aerogel appear to undergo phase separation with well-defined coexistence boundaries, as in the case of liquid-vapor phase separation. The coexistence region, however, is detached from the superfluid transition line, thus removing the tricritical point and opening up a region of miscible superfluid that is rich in 3He. The aerogel sample used in this experiment was jelled and grown directly inside the cylindrical torsional cell of 0.70 cm in diameter and 0.96cm in height.\(^7\) The major advantage of growing aerogel in situ is the elimination of macroscopic void and hence bulk fluid in the cell. If aerogel samples were cut from stock and glued into a cell, it is more difficult to avoid the presence of void spaces.\(^2\) The torsional oscillator was operated at a resonant frequency near 391 Hz. Measurements were made in a 3He and in a dilution refrigerator cryostat. Each experimental run started with a pure 3He sample; subsequent samples were prepared by successive dilutions of 4He to the