GENERALIZED 'DEPENDENCIES' AND PARAMETER VARIANCE

HEINRICH EICHHORN *

Universitätssternwarte Wien, Türkenschanzstraße 17, A-1180 Wien, Austria
Address for correspondence: Department of Astronomy, University of Florida, Box 112055
Gainesville, FL 32611-2055 USA

(Received: 16 November 1995; accepted: 29 May 1996)

Abstract. The 'autodependence', (a special case of the – now quite obsolete – 'dependences', which had been introduced for very specialized astrometric purposes) is proportional to the parameter variance which is the expectation of the variance of the systematic error of a function evaluated with estimated parameters.

Key words: data adjustment, parameter variance, dependences

1. Reference Adjustments

Consider the relationship

\[x = \varphi(\xi, a), \]

between \(x, \xi \) and \(a \). Let \(\xi \) be a vector of known independent variables and \(a^T = (a_1 \ a_2 \ \ldots \ a_n)^T \) be a vector of yet undetermined parameters. Without restricting generality, we may consider it to be linear, i.e.,

\[x = \xi^T a. \] (1)

In order to find an estimate of \(a \), let values of \(x \) be observed for a sufficiently large number \(m \) of samples of vectors of variables \(\xi \) and collect them into the vector \(x_0^T = (x_{0\mu})^T \), so that we get from Eq. (1)

\[\varepsilon_{\mu} + x_{\mu} = \sum_{\nu=1}^{n} \xi_{\mu \nu} a_{\nu}, \quad \mu \in \{1, \ldots, m\}, \] (2)

(where \(\varepsilon_{\mu} \) are the random observing errors) and in matrix form

\[\varepsilon + x_0 = \Xi^T a. \] (3)

We call this a 'reference adjustment' because the Eqs. (1) and the condition equations (3), from which we estimate the parameters \(\hat{a} \), have the same form, in contrast to the more common situation where one uses \(a \), once estimated, to

* On leave from Department of Astronomy, University of Florida.

calculate some quantities y that depend on independent variables η having nothing to do with ξ by $y = \psi(\eta, a)$.

It is then well known that the least-squares estimate \hat{a} of a is

$$\hat{a} = (\Xi \Xi^T)^{-1} \Xi \xi,$$

provided that the covariance matrix of ε is the identity matrix I. In this case, $(\Xi \Xi^T)^{-1}$ is also the covariance matrix of \hat{a}.

Now consider a given vector ξ of independent variables and calculate [from Eq. (1)] the (unobserved) corresponding x. Since the true a is unavailable, we must use \hat{a} as given by Eq. (4), so that we arrive at the estimate

$$\hat{x} = \xi^T (\Xi \Xi^T)^{-1} \Xi x_0$$

which is obviously a linear function of x_0. We introduce D, the vector of generalized dependences by

$$D^T = \xi^T (\Xi \Xi^T)^{-1} \Xi,$$

and thus have from (5) and (6)

$$\hat{x} = D^T x_0,$$

whence

$$\frac{\partial \hat{x}}{\partial x_{0\mu}} = D_\mu.$$

This shows that the proper way to get absolute parallaxes from 'relative' ones is by adding to them $\sum D_\mu \omega_\mu$ rather than $(1/m) \sum \omega_\mu$ (ω_μ being the parallax of the μ-th reference star), as some authors do. The dependence D_μ that is the factor of $x_{0\mu}$ – the μ-th component of x_0 in Eq. (5) – is obviously

$$D_\mu = \xi^T (\Xi \Xi^T)^{-1} \xi_\mu.$$

Dependences were first introduced by Schlesinger (1911) for very simple forms of ξ and later generalized, cf. e.g., Kiselev (1991).

2. The Parameter Variance

Each ξ generates its own vector D of dependences; these will thus have to be calculated separately for each x. This obviates their usefulness in general least-squares adjustment practice but leads, as Schlesinger recognized, to enormous savings in arithmetic effort – a consideration of prime importance at a time when