Computer-Assisted Clinical Training in Child and Youth Care Work

Victor Savicki
Western Oregon State College

ABSTRACT: Computers are examined as a tool for child and youth care training and education. Needs within the field demand a higher level of training over a broader array of knowledge and skills and at a speedier pace. A brief history of computer applications to training and education precedes a discussion of the niche for computer-assisted clinical training within the child and youth care field. Discussion and examples highlight conditions for "well constructed" computer training that take advantage of interactivity and multisensory aspects now available. Conclusions indicate that computer-assisted training is poised to meet child and youth care training needs both by virtue of the availability of hardware and software and because of demands from the field.

Child and youth care work is a demanding profession. Practitioners require a broad range of specific knowledge, a flexible repertoire of practice skills, a sense of judgment in application of the knowledge and skills, and an awareness of how to harness their own selves as a medium of change. No longer can we expect that any "warm body off the street" can intuitively "do good" with children and youth. Neither can we wait for "naturals" to present themselves with already developed repertoires of sophisticated skills. Education and training must be arranged to help current and future child and youth care workers meet the needs of an increasingly urgent and complex practice arena. This paper will discuss and advocate for one method to address education and training needs for child and youth care workers: computer-assisted training.

Initially, this paper will elaborate the relevancy for computer-assisted training, and will sketch a background for understanding how computer training has been used in the past. Computer-assisted training is poised for a discontinuous leap into a set of applications that can benefit child and youth care immensely (Maypole, 1991). Some effort will be spent crafting a position concerning the niche that
computer-assisted training holds. Various levels of training complexity can be addressed with differing methods of computer application. Finally, issues concerning the design of computer-assisted training will be discussed along with the implications of those design issues for an examination of child and youth care curriculum and teaching/learning methods.

Need for Computer Assisted Clinical Training

As the scope and sophistication of child and youth care practice grows, so does the pressure for workers to assemble quickly a solid base of fundamental skills and knowledge so that more advanced training can build upon that foundation. Computer-assisted training can aid in this effort. In the context of in-service training, the historic pattern of rapid turnover leads to untrained workers dispensing questionable service (Krueger, et al, 1985). Supervisors responsible for training new workers often have little time for systematic education efforts and may become disheartened by the need to repeat beginning training for each new worker. With well constructed computer-assisted training, new workers can move through basic material more-or-less independently; working to attain performance at a pre-set criteria. The information can be packaged to motivate study through high interest level, multiple sensory input, and individualized rewards (Reinoehl & Shapiro, 1986). Workers can repeat sections many times if necessary. They can accumulate a set of skills and information that the supervisor can enhance and expand. They can return again and again to refresh and reevaluate concepts in light of line experience.

In the context of pre-service training, educators struggle to provide opportunities for students not only to learn fundamental knowledge and skills, but also to develop decision-making strategies which will lead to that elusive quality of “good judgment” (Savicki & Brown, 1981). Computer-assisted training can aid in this effort. Certainly, as with in-service training above, students can accumulate an expanding set of discrete skills and knowledge. The more rapid this accumulation, the more quickly students can begin to perceive synthesis and integration at a higher level (Phillips, 1983). An awareness of the inter-relatedness of skills and knowledge provides a more diversified view which restrains simplistic impulses and opens conceptual opportunities. Well constructed computer-assisted materials can also provide opportunities for students to make protected mistakes (Alpert, 1986). Practice with a computer simulation protects not only the public from damage, but also allows the student to benefit from experi-