Null Cut Loci of Spacelike Surfaces

Demir N. Kupeli

Received January 6, 1986

The null cut locus of a spacelike submanifold of codimension 2 in a space-time is defined. In globally hyperbolic space-times, it is shown that the future (past) null cut locus $C^+(H) [C^-(H)]$ of a compact, acausal, spacelike submanifold H of codimension 2 is a closed subset of the space-time, and each point $x \in C^+(H)$ is either a focal point of H along some future-directed null geodesic meeting H orthogonally or there exist at least two null geodesics from H to x, realizing the distance between H and x or both. Also, it can be shown that the assumptions of the Penrose's singularity theorem for open globally hyperbolic space-times may be weakened to the space-times which are conformal to an open subset of an open globally hyperbolic space-time.

1. INTRODUCTION

The future cut point of a future-directed null geodesic $\gamma : [0, a) \rightarrow M$ in a space-time M is defined to be the point $q = \gamma(t_0)$, where $t_0 = \sup \{ t \in [0, a) | d[\gamma(0), \gamma(t)] = 0 \}$, with $0 < t_0 < a$ and d is the Lorentzian distance function. Then, the future null cut locus $C^+(p)$ of a point $p \in M$ is defined to be the set of future null cut points of all future inextendable null geodesics $\gamma : [0, a) \rightarrow M$, with $\gamma(0) = p$. In globally hyperbolic space-times, it can be shown that $C^+(p)$ is a closed subset of the space-time, and each $x \in C^+(p)$ is either the first conjugate point of p along a future-directed null geodesic from p to q or there exist at least two null geodesics from p to q realizing the distance $d(p, q) = 0$ or both. Furthermore, a singularity

1 This study is based on Chapter 3 of the author's Ph.D. thesis.
2 Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294.
3 Present address: Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11994.
theorem is proved by making use of the invariance of null cut points under conformal imbeddings (cf. [1], pp. 230–237).

In this paper, we generalize the above concept to the future null locus of a spacelike submanifold H of codimension 2 in an n-dimensional spacetime M, where $n \geq 3$. In our definition of the future null cut locus $C^+_N(H)$ of H, $C^+_N(H)$ corresponds to the set points of the future horismos $E^+(H) = J^+(H) - I^+(H)$ of H where the nontrivial null generators of $E^+(H)$ leave $E^+(H)$ into the future, where $J^+(H)$ and $I^+(H)$ are, respectively, the causal and chronological future of H. Then, by making use of the main ideas in [1], we show that, in globally hyperbolic space-times, the future null cut locus of a compact, acausal, spacelike submanifold of codimension 2 has the properties similar to the future null cut locus of a point. Then, by making use of the properties of the null cut loci of spacelike submanifolds of codimension 2, we show that the normal bundle of a connected, compact, acausal, spacelike submanifold H of codimension 2 is trivial and, therefore, H is orientable. Finally, we show that the assumptions of the Penrose's singularity theorem for open globally hyperbolic space-times (cf. [2], p. 263) can be weakened to the space-times which can be conformally imbedded into an open globally hyperbolic space-time using the invariance of the null cut loci of spacelike submanifolds of codimension 2 under conformal imbeddings.

2. PRELIMINARIES

A space-time (M, g) is an n-dimensional connected, oriented, time-oriented Lorentzian manifold with metric g of signature $(-+++\cdots+)$. A spacelike surface is a connected, imbedded, spacelike (smooth) submanifold of codimension 2 in M. (Note that the normal bundle H^\perp of a spacelike surface H has 2-dimensional timelike fibers, each of which contains two well-defined null directions). The Lorentzian distance between a set H and a point p in a space-time M is defined to be

$$d(H, p) = \begin{cases} \sup \{L(y) \mid y \in \Omega_{H,p} \} & \text{if } \Omega_{H,p} \neq \emptyset \\ 0 & \text{if } \Omega_{H,p} = \emptyset \end{cases}$$

where $\Omega_{H,p}$ is the set of all future-directed piecewise differentiable non-spacelike curves from H to p, and $L(y)$ is the length of $y \in \Omega_{H,p}$.

3. FUTURE NULL CUT LOCUS OF A SPACELIKE SURFACE

Definition 1. Let H be a spacelike surface in a space-time M and $\gamma : [0, a) \to M$ be a future-directed null geodesic with $\gamma(0) \in H$, $\dot{\gamma}(0) \perp H$. A