Singularities in the Kerr–Schild Metrics

R. P. KERR
and
W. B. WILSON
University of Canterbury, Christchurch, New Zealand
Received August 8, 1977

Abstract

It is shown that the only empty space solution of the type "flat space plus the square of a null vector" whose singularities are confined to a bounded region is the Kerr metric.

The Kerr–Schild metrics have the form

\[g_{ab} = \eta_{ab} + 2h_l^a l^b \] \hspace{1cm} (1)

where \(g^{ab} l_a l_b = 0 \) and \((\eta_{ab}) = \text{diag} (1, -1, -1, -1) \) in Cartesian \((t, x, y, z)\) coordinates. It follows that

\[\det (g_{ab}) = \det (\eta_{ab}) = -1 \]
\[g^{ab} = \eta^{ab} - 2h_l^a l^b \]
\[l^a = g^{ab} l_b = \eta^{ab} l_b \]

and so \(l \) is also null with respect to the auxiliary flat metric:

\[\eta^{ab} l_a l_b = 0 \]

We shall use spinor coordinates

\[
\begin{pmatrix}
 x^{00} & x^{01} \\
 x^{i0} & x^{i1}
\end{pmatrix} =
\begin{pmatrix}
 u & \xi \\
 \bar{\xi} & v
\end{pmatrix} = 2^{-1/2}
\begin{pmatrix}
 t - z & x + iy \\
 x - iy & t + z
\end{pmatrix}
\]
giving the flat part of the metric as
\[ds_0^2 = 2 \, du \, dv - 2 \, d\xi \, d\bar{\xi} \]
The real null vector \(l \) (taken as future pointing) determines a spinor, \(\kappa \), by
\[l^\alpha \beta = \kappa^\alpha \kappa^\beta \]
(the dot indicating complex conjugate and the indices ranging over 0 and 1). The multiplicative arbitrariness may be removed by writing
\[(\kappa^0, \kappa^1) = (1, Y) \]
where \(Y \) is an arbitrary complex function of position. This spinor and the linearly independent
\[(i^0, i^1) = (0, 1) \]
generate a flat space null spin tetrad:
\[l = \kappa^\alpha \kappa^\beta \partial_{\alpha \beta} = \partial_u + Y \partial_\xi + \overline{Y} \partial_{\bar{\xi}} + Y \overline{Y} \partial_v \]
\[n_0 = i^\alpha i^\beta \partial_{\alpha \beta} = \partial_v \]
\[m = \kappa^\alpha i^\beta \partial_{\alpha \beta} = \partial_\xi + \overline{Y} \partial_v \]
\[\overline{m} = i^\alpha \kappa^\beta \partial_{\alpha \beta} = \partial_{\bar{\xi}} + Y \partial_v \]
of which \(l \) and \(n_0 \) are real, and \(m \) and \(\overline{m} \) complex conjugates.
The covariant spinor components are taken as
\[(\kappa_0, \kappa_1) = (\kappa^1, -\kappa^0) = (Y, -1) \]
\[(i_0, i_1) = (1, 0) \]
so that the corresponding flat null differential forms are
\[\lambda = \kappa_\alpha \kappa_\beta dx^{\alpha \beta} = du - \overline{Y} d\xi - Y d\bar{\xi} + Y \overline{Y} du \]
\[\nu_0 = i_\alpha i_\beta dx^{\alpha \beta} = du \]
\[\mu = \kappa_\alpha i_\beta dx^{\alpha \beta} = -d\bar{\xi} + \overline{Y} du \]
\[\overline{\mu} = i_\alpha \kappa_\beta dx^{\alpha \beta} = -d\xi + Y du \]
The metrics are
\[ds_0^2 = 2\lambda \nu_0 - 2\mu \overline{\mu} \]
and
\[ds^2 = 2\lambda (\nu_0 + h\lambda) - 2\mu \overline{\mu} \]
A null tetrad for the latter is constructable merely by changing \(\nu_0 \) to
\[\nu = du + h\lambda \]
and hence \(n_0 \) to
\[n = \partial_v - h \xi \]