Vacuum Type N Space-times Admitting Homothetic Vector Fields with Isolated Fixed Points

J. da Costa1 and E. G. L. R. Vaz1

Received November 18, 1991

We consider vacuum space-times (M, g) which are of Petrov type N on an open dense subset of M, and which admit (proper) homothetic vector fields with isolated fixed points. We prove that if such is the case then, at the fixed point, (M, g) is flat and the homothetic bivector, $X_{[e, f]}$, is necessarily simple-timelike. Furthermore, we prove that if the homothetic bivector remains simple-timelike in some neighbourhood of the fixed point then, around the fixed point, the space-time in question is a pp-wave. The paper ends with a local characterization and some examples of space-times satisfying these conditions.

1. INTRODUCTION

Let (M, g) be a space-time, i.e. a smooth, 4-dimensional paracompact manifold M together with a metric g of Lorentzian signature $(-, +, +, +)$. A vector field X on M is said to be a (proper) homothetic vector field if there exists a real number $\lambda \neq 0$ such that, \mathcal{L} denoting the Lie derivative, we have

$$\mathcal{L}Xg = 2\lambda g. \quad (1)$$

λ is then called the homothetic constant (of X). By means of a rescaling, one can always set $\lambda = 1$, and this will be assumed done from now on. Setting

$$f_{ab} = \frac{1}{2}(X_{a,b} - X_{b,a}), \quad (2)$$

1 Dept. de Matemática, Univ. do Minho, Largo do Paço, 4700 Braga, Portugal
where the semi-colon denotes the covariant derivative with respect to the metric connection, one has \(X_{a;b} = g_{ab} + f_{ab} \). The bivector \(f_{ab} \) is called the homothetic bivector (of \(X \)).

A point \(p_0 \in M \) is said to be a fixed point of \(X \) if one has \(X_{p_0} = 0 \). As is well known (\(X \) being an affine vector field, see Ref. 1) if one considers at \(p_0 \) a real null tetrad which spans the blades of \(f \) and one considers the normal coordinate system associated with this tetrad, then, with respect to these coordinates \(X \) admits the local expression \(X_p = M \times q \), where \(M \) is the matrix \(\delta^a_b + f^a_b \) computed at \(p_0 \) and \(p \) is identified with the tangent vector \(\exp^{-1}(p) \). This shows that the classification of the homothetic bivector \(f_{ab} \) at \(p_0 \) is in fact a classification of \(X \) around \(p_0 \) and provides us with some essential information about the local structure of \((M, g)\) around \(p_0 \). Following this point of view, and using a result of Beem [5], one proves then that if \(f \) is 0, simple-null or simple-spacelike at \(p_0 \) then \((M, g)\) is flat around \(p_0 \) [2,6]. This leaves the cases when \(f \) is either simple-timelike or non-simple to be analysed. In both cases, one can choose at \(p_0 \) a real null tetrad \((l, m, x, y)\) such that one has, at \(p_0 \)

\[
f_{ab} = 2\alpha_0 l_{[a}m_{b]} + 2\beta_0 x_{[a}y_{b]},
\]

(3)

where \(\alpha_0, \beta_0 \in \mathbb{R} \) and one has \(\alpha_0 \neq 0 \) in all cases and \(\beta_0 \neq 0 \) in the non-simple case. The value of \(\alpha_0 \) plays an essential role; in fact if \(|\alpha_0| < \lambda = 1 \), one can again use Beem’s result to prove that \((M, g)\) is flat around \(p_0 \) [2]. If \(|\alpha_0| = \lambda = 1 \), the matrix \(M \) described above, has rank 3 at the fixed point, and it follows that the (sufficiently small) elements in its kernel correspond (through the exponential map) to fixed points of \(X \); in fact this kernel is a null subspace of \(T_{p_0}M \) and so (at least around \(p_0 \)) the set of fixed points of \(X \) is (part of) a null geodesic. This case has been analysed by Alekseevski [6] and Hall [2], who have proved that, around \(p_0 \), \((M, g)\) is a plane-wave.

When \(|\alpha_0| > 1 \), \(M \) has rank 4 at \(p_0 \) and so \(p_0 \) is an isolated fixed point of \(X \). No general results concerning the local structure of \((M, g)\) around \(p_0 \) are known in this case. However, it should be stressed that, at \(p_0 \) and on some subsets of \(M \) containing \(p_0 \), a complete classification, in what concerns Petrov and Segre types has been obtained by Hall [2] and we summarize them now.

Consider the normal coordinates \((u, v, r, s)\) associated with the tetrad \((l, m, x, y)\) at \(p_0 \). As follows from the expression of the matrix \(M \) described above, the local expression for \(X \) in these coordinates is then

\[
X = (1 - \alpha_0)u \partial_u + (1 + \alpha_0)v \partial_v + (r + \beta_0 s) \partial_r + (s - \beta_0 r) \partial_s.
\]

(4)

Suppose that \(\alpha_0 > 1 \) (if \(\alpha_0 < -1 \), change \(u \) with \(v \) in what follows) and denote by \(S \) the hypersurface \(u = 0 \), by \(\Gamma \) the curve given by \(v = r = s = 0 \).