A Characterization of Robertson-Walker Spaces by Null Sectional Curvature

STEVEN G. HARRIS

Department of Mathematics,
Oregon State University,
Corvallis, Oregon 97331

Received May 9, 1984

Abstract

For N a null vector and A a vector perpendicular to N, define the null sectional curvature, with respect to N, of the plane $N \wedge A$ as $\kappa_N(N \wedge A) = \langle R(N, A)A, N \rangle / \langle A, A \rangle$. Then Robertson-Walker metrics can be locally characterized as those for which κ_N at each point is a constant for all the null plans at that point (in each null direction, N must be appropriately chosen). A global characterization of Robertson-Walker spaces is achieved by adding completeness and causality hypotheses.

Sectional curvature, although a powerful tool in Riemannian geometry, plays a somewhat different role in Lorentz manifolds (signature $-+\cdots+$), in part because sectional curvature is not defineable for null planes (2-planes degenerate in the induced metric). An additional tool for the study of such planes is null sectional curvature, defined in [1] as follows: Let π be any null plane; π consists of a one-dimensional subspace of null vectors and of spacelike vectors perpendicular to that subspace. Let N be one of the null vectors and A one of the spacelike vectors. Then the null sectional curvature of π with respect to N is

$$\kappa_N(\pi) = \frac{\langle R(A, N)N, A \rangle}{\langle A, A \rangle}$$

this is independent of the choice of a spacelike vector A in π. Here \langle, \rangle is the metric and $R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$. The metric on the bivectors Λ^2M of M will also be denoted with \langle, \rangle: $\langle A \wedge B, C \wedge D \rangle = \langle A, C \rangle \langle B, D \rangle$.

493
\(\langle A, D \rangle \langle B, C \rangle \); note that a 2-plane \(\pi \), considered as a bivector, is null if and only if \(\langle \pi, \pi \rangle = 0 \).

The purpose of this paper is to investigate the question, what happens if, in an appropriate sense, null sectional curvature is a point function, i.e., at each point it is independent of the choice of null planes at that point? Under the right conditions the answer is that the manifold is a Robertson-Walker (also known as Friedmann) space, i.e., a warped product \((\mathbb{R}^1, -dt^2) \times _\rho (V, h) \) with \((V, h) \) a Riemannian manifold of constant curvature (see [2], pp. 134-142); the notation used here is that for \((M_1, g_1) \) and \((M_2, g_2) \) pseudo-Riemannian manifolds and \(\rho: M_1 \to \mathbb{R}^+ \) a positive scalar function, \((M_1, g_1) \times _\rho (M_2, g_2) = (M_1 \times M_2, p_1^*g_1 + (\rho \circ p_1)p_2^*g_2) \), where \(p_i: M_1 \times M_2 \to M_i \) is projection.

Since null sectional curvature depends on the choice of one element of a one-dimensional space of null vectors, it is first necessary to fix this choice. If all null planes containing a given null direction are to be measured by the same null vector, then one must make one choice for each null direction: For a Lorentz manifold \(M^n \) \((n \geq 3)\), define a null congruence on \(M \) to be a submanifold \(C \) of the bundle \(T^0M \) of nonzero null vectors on \(M \) such that for all \(N \in T^0M \), there is exactly one scalar \(\lambda \) with \(\lambda N \in C \); for \(p \in M \), let \(C_p = C \cap T_pM \).

The question raised above can now be put a little more precisely: What happens if, for an appropriate congruence \(C \), there is a scalar function \(k: M \to \mathbb{R} \) such that for any null plane \(\pi \) at \(p \in M \), containing \(N \in C_p \), \(k_N(\pi) = k(p) \)?

What makes a null congruence appropriate? One convenient property would be that the congruence respects null geodesics: Define a null congruence to be geodesic if for all null geodesics \(\beta(\nabla_\beta \dot{\beta} = 0) \), if \(\dot{\beta}(t_0) \in C \) for some \(t_0 \), then \(\dot{\beta}(t) \in C \) for all \(t \).

How may a null congruence be easily specified? One way is with a timelike vector field: For \(U \) a timelike vector field on a Lorentz manifold \(M \), define the null congruence \(C(U) \) associated with \(U \) by

\[
C(U) = \{ N \in T^0M \mid \langle N, U \rangle = 1 \}
\]

Since a timelike and a null vector always have a nonzero inner product, this will always be a null congruence (timelike is understood to preclude being zero).

Let us first examine the situation of null sectional curvature being a point function with respect to \(C(U) \) for \(U \) any timelike field; we may just as well consider the congruence \(C(E) \) for \(E = U/|U| \) \(|X| = |\langle X, X \rangle|^{1/2} \), since that changes each choice of null vector \(N \) and, hence, each \(k_N(\pi) \) by a scalar function. It turns out (Proposition 1) that this is equivalent to infinitesimal isotropy of \(M \) with respect to \(E \), as defined by Karcher in [3]: \(M \) is infinitesimally isotropic with respect to a unit timelike vector field \(E \) is the Riemann curvature tensor \(R \), regarded as a skew-adjoint endomorphism of the bivectors \(\Lambda^2 M \) of \(M \), has two eigenspaces: the bivectors perpendicular to \(E \), denoted \(\Lambda^2(E \perp) \), and the 2-planes containing \(E \), denoted \(\Lambda^2E \). It will be convenient to recall here one of Karcher's results in [3]: