One-Sided Type-D Gravitational Instantons

M. PRZANOWSKI
Institute of Physics, Technical University,
Wólczańska 219, 93-005 Łódź, Poland

B. BAKA
Institute of Physics, Technical University,
Wólczańska 219, 93-005 Łódź, Poland

Received May 11, 1983

Abstract

It is shown that for every one-sided type-D gravitational instanton, Einstein's vacuum equations can be reduced locally to a single second-order, nonlinear differential equation of second degree of one real function.

§1: Introduction

It is well known that for every complex space-time with one-sided algebraically degenerate Weyl tensor, Einstein's vacuum equations can be reduced to a single nonlinear differential equation of the second order and second degree. (1) In particular, for H spaces this equation appears to be the "second heavenly equation." (2, 3)

On the other hand, every self-dual (or anti-self-dual) vacuum gravitational instanton is locally a Kählerian manifold and in this case Einstein's equations are reducible locally to a single second-order, nonlinear differential equation of second degree (4, 5) which is the analog of Plebański's "first heavenly equation." (2, 3) Hence, the natural question arises ‘can the result of Ref. 1 concerning complex space-times be carried over to the spaces of positive-definite metric'? Our paper is devoted to this subject.

Using the "instanton" version of the generalized Goldberg-Sachs Theorem (5, 6) we prove that Einstein's vacuum equations for the one-sided type-D
gravitational instanton, which appears now to be a locally Hermitian manifold, can be reduced locally to a single second-order, nonlinear differential equation of second degree of one real function. This function is closely related to the "first key function" introduced by Plebański in his studies over \(H \) Spaces. (2, 3)

Our considerations are purely local. The formalism used is the null tetrad one as presented in Refs. 4–7.

\section{(2): The Reduction of Einstein Equations}

We assume that the gravitational instanton \(M \) is of the type anything \(\times D \) and moreover, that its traceless Ricci tensor \(C_{\alpha\beta} \) vanishes. Then from the instanton version of the generalized Goldberg-Sachs theorem (5, 6) it follows that the metric \(ds^2 \) of \(M \) is locally Hermitian, i.e., for some local complex coordinates \(\{z^\alpha\}, \alpha = 1, 2, \)

\[
\begin{aligned}
ds^2 &= g_{\alpha\bar{\alpha}} \, dz^\alpha \otimes \overline{dz^\alpha} + g_{\bar{\alpha}\alpha} \, \overline{dz^\alpha} \otimes dz^\alpha \\
\overline{\bar{\beta}} &= \overline{1}, \overline{2}, \quad \overline{dz^\beta} = \overline{dz^\bar{\beta}}, \quad g_{\alpha\bar{\beta}} = g_{\bar{\alpha}\beta}
\end{aligned}
\]

Define four 1-forms:

\[
\begin{aligned}
e^1 &= g_{1\bar{\beta}} \, dz^\bar{\beta}, \quad e^4 = g_{2\bar{\beta}} \, dz^\bar{\beta} \\
e^2 &= dz^1, \quad e^3 = dz^2
\end{aligned}
\]

Then

\[
ds^2 = e^1 \otimes e^2 + e^2 \otimes e^1 + e^3 \otimes e^4 + e^4 \otimes e^3
\]

and we find that the four 1-forms \(\{e^a\}, a = 1, 2, 3, 4, \) constitute an extended null tetrad (see Ref. 5). Now, from the first Cartan structure equations

\[
de^a + \Gamma^a_{\,b} \wedge e^b = 0
\]

one can obtain the "dotted" connection forms:

\[
\begin{aligned}
\Gamma_{41} &= \frac{1}{g} \, g_{\alpha[2,\bar{1}]} \, dz^\alpha \\
\Gamma_{32} &= g_{\alpha[2,1]} \, dz^\alpha \\
-\Gamma_{12} + \Gamma_{34} &= -g^{\alpha\bar{\beta}} \, g_{\alpha[\bar{\beta},\gamma]} \, dz^\gamma - g^{\bar{\beta}\alpha} \, g_{\bar{\beta}(\bar{\alpha},\gamma)} \, dz^\gamma
\end{aligned}
\]

where \(g := \det (g_{\alpha\bar{\beta}}) \), \(g^{\alpha\bar{\beta}} \) is a prime (') denotes the partial derivative. For the base defined by (2) and with \(C_{\alpha\beta} = 0 \), the "dotted" \(\equiv \) anti-