Nonlinear Electrodynamics in Space-times with Torsion

L. C. Garcia de Andrade1,2

Received July 31, 1989

A nonminimal and nongauge invariant description of nonlinear electrodynamics in space-times with torsion is given. It is shown that in the case of the Weitzenböck teleparallel space-time, massive photons are produced by a mechanism which involves the nonminimal coupling constant and the divergence of the torsion vector.

1. INTRODUCTION

It is well known that in order to preserve local gauge invariance \cite{1-6} a gauge field cannot be minimally coupled to the geometry of a space-time with torsion such as the Riemann-Cartan space U_4. Many attempts have been made to solve this problem. To mention just two, we may cite the attempt of de Sabbata and Gasperini \cite{1} to construct a "semiminimal" coupling principle for the electromagnetic field in a space with torsion and the construction of Hojman, Rosembaum and M. P. Ryan \cite{6}, identifying the usual concept of a gauge transformation and allowing torsion to propagate in a vacuum U_4. In this paper we adopt a different point of view. Instead of trying to preserve the local gauge invariance, we construct a nonminimal coupling between electromagnetism and gravitation.

1 Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA

2 On leave of absence from: Grupo de Relatividade e Teoria de Campo, Instituto de Física – UERJ, Departamento de Fisica Teorica, 20550 Maracanã, Rio de Janeiro, Brazil
in a Riemann-Cartan space-time via a nonlinear electrodynamics coupled with torsion. Although a unification with other physical interactions like the weak and strong interactions [1] in U_4 is done, our approach provides a mechanism to generate massive photons [7] in a Riemann-Cartan space-time [3]. Nonlinear photons in the context of General Relativity were constructed some years ago by Novello and Salim [7]. In the next section we review the Proca field [8] equation in a Minkowski space M_4, and the nonlinear photons in a Riemannian space-time. In Section 3 we present a Lagrangian density of the "Einstein-Cartan-Proca" nonlinear electrodynamics in space-times with torsion and derive the Proca field equation in U_4 and the Maxwell's nonlinear field equation with source. Taking the linear approximation of the torsion fields and the Weitzenböck T_4 teleparallel space, where the only contribution to curvature comes from the torsion, we show that the photon mass is proportional to the divergence of the torsion field in the static T_4 space-time.

2. MASSIVE PHOTONS IN GENERAL RELATIVITY

Some experiments for the detection of the massive photons in the context of special relativity and even GR have been proposed by Goldhaber and Nieto [10]. On the theoretical framework a nonlinear electrodynamics in (pseudo-)Riemannian space-times has been proposed by Novello and Salim [7]. Let us review the Proca field equation M_4

$$\Box A^i + \left(\frac{\mu^2}{4\pi}\right) A^i = J^i$$

where $\Box = \partial_i \partial^i$ ($\partial_i \equiv \partial/\partial x^i$) is the D'Lambertian operator in M_4, $A^i (i = 0, 1, 2, 3)$ is the 4-vector electromagnetic potential and J^i is the charge 4 current. In the case of a static charge placed at origin eq. (1) has the following solution [8]

$$A^0 = q(e^{-\mu r/r})$$

in spherical coordinates. Here μ represents the mass of the photon; eq. (2) implies a short range type interaction for this type of electrodynamics. Novello and Salim have obtained the following generalization of Maxwell's equations in V_4

$$\nabla_i F^{ij} = J^i - (\lambda/k) R(\{\}) A^i$$

where $R(\{\})$ is the Ricci scalar of GR, $k = (8\pi G/c^4)$ is the Einstein coupling constant, and F^{ij} is the electromagnetic field tensor given by

$$F_{ij} = \partial_i A_j - \partial_j A_i.$$