Diagonalization of Compact Operators in Hilbert Modules over Finite W^*-Algebras

V.M. Manuilov

Abstract: It is known that a continuous family of compact self-adjoint operators can be diagonalized pointwise. One can consider this fact as a possibility of diagonalization of the compact operators on Hilbert modules over a commutative W^*-algebra. The aim of the present paper is to generalize this fact to a finite W^*-algebra A not necessarily commutative.

We prove that for a compact operator K acting on the right Hilbert A-module H_A^* dual to H_A under slight restrictions one can find a set of "eigenvectors" $x_i \in H_A^*$ and a non-increasing sequence of "eigenvalues" $\lambda_i \in A$ such that $K x_i = x_i \lambda_i$ and the selfdual Hilbert A-module generated by these "eigenvectors" is the whole H_A^*. As an application we consider the Schrödinger operator in a magnetic field with irrational magnetic flow as an operator acting on a Hilbert module over the irrational rotation algebra A_θ and discuss the possibility of its diagonalization.

Key words: Diagonalization of operators, Hilbert module, compact operator, W^*-algebras
MSC 1991: 46L89

1. Introduction

The classical Hilbert-Schmidt theorem states that any compact self-adjoint operator acting on a Hilbert space can be diagonalized. It is also known that a continuous family of compact operators is diagonalizable. When active study of Hilbert modules began some results were obtained concerning diagonalizability of some operators acting on these modules. R.V. Kadison ([8], [9]) proved that a self-adjoint operator in a free finitely generated module over a W^*-algebra is diagonalizable. Later on some other interesting results about diagonalization of operators appeared [7], [16], [24]. This paper is a step in the same direction and is concerned with the diagonalization of compact operators in the Hilbert module H_A^* over a finite W^*-algebra A. Its main results were announced in [15].

The present paper is organized as follows:

In Section 2 we study some properties of Hilbert modules over finite W^*-algebras related with orthogonal complementability. The main technical result is the isomorphy of H_A^* and the orthogonal complement to A in H_A^*. In Section 3 we recall the basic facts about the compact operators in Hilbert modules. Here we also give an example showing that the module H_A is not sufficient to diagonalize compact operators, so we must turn to its dual module H_A^*. Section 4 contains the proof of the main theorem of this paper about diagonalization of a compact operator in the
module H^*_A. Here we also discuss the uniqueness condition for the “eigenvalues” of
this operator. Section 5 deals with quadratic forms on Hilbert modules related to a
self-adjoint operator. Properties of these forms are mostly the same as on a Hilbert
space. In Section 6 we discuss an example which motivated the present paper. We
consider the perturbated Schrödinger operator with irrational magnetic flow as an
operator acting on a Hilbert module over the irrational rotation algebra A_θ and we
show that this operator is diagonalizable.

Acknowledgement. I am indebted to A.A. Irmatov, A.S. Mishchenko and
E.V. Troitsky for helpful discussions. This work was partially supported by the
Russian Foundation for Fundamental Research (grant N 94-01-00108-a) and the In-
ternational Science Foundation (grant N MGM000). The final version of this paper
was written during my visit to Leipzig University and to Humboldt University of
Berlin under hospitality of Dr. M. Frank and Prof. Dr. Th. Friedrich, respectively.

2. Orthogonal Complements in Hilbert Modules over Finite
W^*-Algebras

Throughout this paper A is a finite W^*-algebra admitting a central decomposition
into a direct integral over a compact Borel space. By τ we denote a normal faithful
finite trace on A with $\tau(1) = 1$. Recall some facts about Hilbert modules. Standard
references on them are [10], [12], [19]. If B is a C^*-algebra, we denote by H_B (another
usual denotation is $l_2(B)$) the right Hilbert B-module consisting of the sequences
$(x_i), x_i \in B, \ i \in \mathbb{N}$ for which the series $\sum_i x_i^* x_i$ converges in the norm topology
of B with the inner product $\langle x, y \rangle = \sum_i x_i^* y_i$ and the norm $\|x\| = \|\langle x, x \rangle\|^{1/2}$. Let
H_B^* be its dual module, $H_B^* = \text{Hom}_B(H_B; B)$. It is shown in [20] that in the case
of W^*-algebras the inner product on the module H_B can be extended to the inner
product on the module H_B^* and this module is selfdual, i.e., $(H_B^*)^* = H_B^*$.

Let $M \subset H_B^*$ be a Hilbert B-submodule. By M^\perp we denote its orthogonal com-
plement in H_B^*. It is well-known ([3]) that if M is a finitely generated projective
Hilbert B-submodule in H_B^*, then it is orthogonally complemented: $H_B^* = M \oplus M^\perp$.
If we replace H_B^* by H_B, then the orthogonal complement to M in H_B is isomor-
phic to H_B, but it is not known in general whether M^\perp and H_B are isomorphic.
The following theorem solves this problem in the case of modules over a W^*-algebra
decomposable into a direct integral of finite factors and having a faithful finite trace.

Theorem 2.1. If M is a finitely generated projective A-submodule in H_A^*, then
M^\perp is isomorphic to H_A^*.

Proof. The idea of the following proof is contained in [3]. Let g_1, \ldots, g_n be gener-
ators of the module M. Without loss of generality we can assume that the operators
$\langle g_i, g_i \rangle \in A$ are projections, $\langle g_i, g_i \rangle = p_i$. Let $\{e_m\}$ be the standard basis of the
module $H_A \subset H_A^*$. Fix $\varepsilon < 0$ and define elements $e_m' \in M^\perp$ by the equality
$$e_m' = e_m - \sum_{i=1}^n g_i(g_i, e_m).$$