It can accordingly be considered that the autonomic and EEG phenomena accompanying the pressor response are based mainly on adrenergic mechanisms, whereas the depressor responses are based on a different neurochemical mechanism. It follows from the work of Val'dman et al. [2] and of Teplov and Vasil'eva [8] that the electroencephalographic and autonomic manifestations of depressor responses evoked by stimulation of the hypothalamic nuclei have a predominantly cholinergic mechanism.

LITERATURE CITED

EFFECT OF A HIGH-VOLTAGE CAPACITOR DISCHARGE ON OPTICAL PROPERTIES OF FROG HEART MUSCLE

I. P. Arleevskii, V. K. Bezuglov, and V. G. Buzukin

A high-voltage capacitor discharge caused a sharp increase in the intensity of flux of plane-polarized light passing through a strip of frog heart muscle. This may indicate changes in the optical properties of the tissue due to conformational changes in the membrane proteins.

KEY WORDS: high-voltage discharge; heart; optical properties.

Experiments on a cell membrane model based on the use of frog skin showed that an electric discharge induces changes in its transmembrane potential, in the parameters of the volt-ampere characteristic curve, and in permeability to sodium, potassium, and calcium ions [1-3].

All these changes are evidently a reflection of momentary structural changes in the cell membranes at the time of the electric discharge.

No. 1 Department of Internal Medicine, V. I. Lenin Postgraduate Medical Institute, Kazan'. (Presented by Academician of the Academy of Medical Sciences of the USSR A. A. Vishnevskii*) Translated from Byulleten' Ekperimental'noi Biologii i Meditsiny, Vol. 81, No. 5, pp. 531-533, May, 1976. Original article submitted May 5, 1975.

*Deceased.
The object of this investigation was to study the action of a high-voltage capacitor discharge on the optical properties of a strip of frog heart.

EXPERIMENTAL METHOD

A strip of frog heart was placed in a cell between two glass plates and nickel electrodes so that an electric discharge and a beam of polarized light could be passed through it. A block diagram of the apparatus is shown in Fig. 1. The cell (1) was placed in the ML-1 luminescence microscope (2) between two crossed polaroids (12 and 13). The beam of light passing through the cell and the polaroids fell on the photocathode of an FÉU-39 photoelectronic multiplier (3), the voltage for which was supplied by a VS-23 high-voltage stabilized rectifier (4). The signal from the photoelectronic multiplier was led to a UIS-2M amplifier (5) and then to an S-1-54 oscilloscope (6). The sweep of the oscilloscope was triggered by application of a potential from the voltage source (8) through a relay (7) activated by the button (11). The discharge from the ID-1-VÉI defibrillator (10) was transmitted to the cells through the relay (9). So that the oscilloscope would be triggered a little earlier than the beginning of the discharge, the actuation time of the relay (7) was less than the actuation time of the relay (9). The signal was recorded from the oscilloscope screen by means of a "Zenit" camera.

EXPERIMENTAL RESULTS AND DISCUSSION

In preliminary experiments in which the cell was replaced by an equivalent resistor, the pulse was photographed at different discharge voltages. The duration of the signal was found to be 3-5 msec. The discharge consisted mainly of two parts: an exponential drop of the current (duration 1 msec) and a damped oscillatory process. When the cell containing the biological object was included in the scheme, the parameters of the discharge were practically unchanged (Fig. 2).