The Concomitants of Spinors of Type [3/2, 1/2] in Space-Time

B. DODDS

Mathematics Department, Heriot-Watt University, Chambers Street, Edinburgh

Received: 16 May 1972

Abstract

Explicit forms for the concomitants which are bilinear in two spinors of type [3/2, 1/2] and the concomitants which are quadratic in a single spinor of type [3/2, 1/2] are obtained. The dual-tensors, where they exist, are also given.

The concomitants of higher-order spinors can be obtained in an exactly similar manner.

1. Introduction

The definition of spinors is dependent upon the frame of anticommuting matrices. In four-dimensional space-time, where the metric is taken to have signature +2, the anticommuting set of matrices X_i is taken as that used by Littlewood (1972), namely

$$X_1 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad X_2 = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix},$$

$$X_3 = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, \quad X_0 = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix},$$

where

$$X_0^2 = -I, \quad X_i^2 = I$$

$$X_0 = -X_0, \quad X_i = X_i. \quad (i = 1, 2, 3).$$

Defining the metric tensor as

$$g_{ij} = g^{ij} = \begin{cases} 0 & (i \neq j), \\ 1 & (i = j; i, j = 1, 2, 3), \\ -1 & (i = j = 0), \end{cases}$$
it follows that
\[X^0 = -X_0, \quad X^i = X_i, \quad (i = 1, 2, 3), \]
and hence
\[(x^i x^i)^2 = (x^i x_i)^2 = g_{ij} x^i x^j = g^{ij} x_i x_j, \]
which will be taken as the metric of space-time.
Corresponding to any Lorentz transformation, \(L \) say, as given by
\[x'_i = a_i^j x_j, \quad (i = 1, 2, 3, 0), \]
there is a matrix \(U \), the basic spin matrix, which is unique apart from sign such that
\[a_i^j x_j = U^{-1} x_i U, \]
where \([a_i^j]\) is a Lorentz matrix whose elements thus satisfy the 'orthogonal' relations
\[a^i_k a^j_l = g_{kl}, \quad a^i_l a^j_k = g^{ij}. \quad (1.2) \]
A four-rowed real vector which, under \(L \), is transformed by \(U \), is called a basic spinor. By considering the direct product of a simple tensor of type \(\{n\} \) and a basic spinor, on removal of the contractions present, an irreducible symmetric spinor of type \([n + 1/2, 1/2]\) is obtained, \(n \) being a positive integer. Explicit forms for such spinors have been given elsewhere (Dodds, 1972). If \(V_1, \ldots, v_n \) is an irreducible symmetric spinor of type \([n + 1/2, 1/2]\), it consists of \((n + 3)!/n!3! \) real four-vectors of which just \((n + 2)!/n!2! \) are independent because of the zero contractions \(X^i V_1, \ldots, v_n = 0 = g^{ij} V_1, \ldots, v_n \).

The concomitants which are bilinear in two spinors of type \([n + 1/2, 1/2]\) and the concomitants which are quadratic in a single spinor of type \([n + 1/2, 1/2]\), are of types given by the expansions of the products \([n + 1/2, 1/2][n + 1/2, 1/2] \) and \([n + 1/2, 1/2] \otimes \{2\} \) respectively. In the case of basic spinors, i.e. when \(n = 0 \), it is well known that the concomitants which are bilinear in two basic spinors are five in number, consisting of an invariant, a pseudo-invariant, a four-vector, a pseudo four-vector and a six-vector. When the basic spinors are made equal to give the concomitants which are quadratic in a single basic spinor, just the four-vector and the six-vector survive. This paper is concerned with the analysis of the higher-order case when \(n = 1 \), i.e. when the spinor or spinors are of type \([3/2, 1/2]\).

In order to illustrate later results, a particular reference frame is used. Suppose that \(W \) and \(Z \) are two basic spinors and that \(\xi_1 \) and \(\eta_1 \) are two tensors of type \(\{1\} \). Putting \(W_1 = \xi_1 W \) and \(Z_1 = \eta_1 Z \), then \(V_1 \) and \(Y_1 \), where \(X^i V_1 = 0 = X^i Y_1 \), are two irreducible spinors of type \([3/2, 1/2]\) where (Dodds, 1972)
\[V_1 = W_1 - X_1 (X^j W_j)/4, \quad Y_1 = Z_1 - X_1 (X^j Z_j)/4. \quad (1.3) \]
Following Littlewood (1969, 1972), the particular reference frame is chosen in which one of the basic spinors, \(Z \) say, is in canonical form. Hence, in this reference frame, the basic spinors are given by
\[\vec{W} = [\alpha, \beta, \gamma, \delta], \quad \vec{Z} = [\epsilon, 0, 0, 0], \]