EFFECT OF NONACHLAZINE AND OXYFEDRINE ON THE CORONARY BLOOD FLOW IN DOGS

N. V. Kaverina, G. G. Chichkanov, V. B. Chumburidze, and D. D. Matsievskii

The coronary blood flow in anesthetized and unanesthetized dogs was measured by means of an ultrasonic Doppler radiotelemetric apparatus. The ultrasonic transducer was placed on the upper third of the descending branch of the left coronary artery. Nonachlazine was shown to increase the coronary blood flow considerably in both anesthetized and unanesthetized dogs. However, the action of the substance lasted only 2-3 min and depended on changes in cardiac activity. Oxyfedrine increased the coronary blood flow by a lesser degree than nonachlazine but for a longer time (mean 20 min). Considering the high effectiveness of the two substances in clinical practice the authors conclude that the increase in the coronary blood flow is not the main course of action when attempting to obtain an antianginal effect in patients with ischemic heart disease.

KEY WORDS: coronary blood flow; nonachlazine; oxyfedrine; antianginal effect.

In experiments on anesthetized cats in which the outflow of blood from the coronary sinus was recorded it was shown that nonachlazine and oxyfedrine increase the volume velocity of the coronary blood flow [2]. Since different species of animals may differ in their reactivity to the same pharmacological agents, it is interesting to study the effect of these drugs on the coronary blood flow in dogs.

Since the coronary blood flow can be recorded by the ultrasonic method in unanesthetized animals, one object of the investigation was to study the effect of nonachlazine and oxyfedrine on the coronary blood flow in dogs under free behavior conditions.

EXPERIMENTAL METHOD

The coronary blood flow was measured by means of a Doppler radiotelemetric apparatus [4, 6]. Ultrasonic transducers of the coronary blood flow were made in the form of a removable bandage of small size and not exceeding 1.5-2 g in weight. By means of a thin elastic guide 0.7 mm in diameter the transducer could be placed in any position on the surface of the heart without deforming the blood vessel. The ultrasonic instrument measures the linear and volume velocities of the blood flow and emits two signals: the phasic blood flow and its mean value with a time constant of integration of 2.5 sec. These signals were led to a recorder and also to a monitor for visual observation. A Mingograph-81 apparatus was used as the recorder. The velocity of the blood flow was recorded on magnetic tape throughout the experiment. The ultrasonic transducers were calibrated on a hydraulic test bench and in experiments on animals. On the test bench the operation of the transducers was studied in pulsating flows by means of a Pitot's tube [5]. In the experiments on dogs the transducers of the telemetric apparatus were implanted on the common artery, the descending part of the arch of the aorta, and the abdominal aorta. To compare the results of the measurements, transducers of a pulsed ultrasonic flowmeter were placed alongside on the vessel [1, 3]. Particular attention was paid to accuracy of measurement of the phasic blood flow (Fig. 1).

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.
Acute experiments were carried out on mongrel dogs weighing 13-20 kg anesthetized with urethane (600 mg/kg) and chloralose (40 mg/kg). Under artificial ventilation the thorax was opened in the fourth left intercostal space and the pericardium was divided. The ultrasonic transducer was placed on the upper third of the descending branch of the left coronary artery. The pressure in the aorta, the ECG in standard lead II, and the heart rate also were recorded. The volume velocity of the coronary blood flow also was recorded in the dog while behaving freely. For this purpose the ultrasonic transducer was implanted on the descending branch of the left coronary artery of the animal under pentobarbital anesthesia (40 mg/kg). A polyethylene catheter was introduced into the jugular vein for injection of the substances. The blood flow was recorded radiotelemetrically on the 7th day after the operation. The substances were injected intravenously: nonachlazine in doses of 1, 3, 5, and 6 mg/kg and oxyfedrine in doses of 0.3, 0.5, and 1 mg/kg.

EXPERIMENTAL RESULTS AND DISCUSSION

In doses of 1 and 3 mg/kg nonachlazine had no significant effect on the volume velocity of the coronary blood flow in anesthetized dogs. In a dose of 5-6 mg/kg it increased the coronary blood flow (in nine experiments by an average of 63 ± 5.8%). This effect was observed during injection of the drug and it continued for only 2-3 min. Meanwhile the aortic pressure fell very slightly (on average by 6 ± 0.7%) with no significant change in the heart rate. Later the aortic pressure increased by 15-20 mm Hg compared with initially, the bradycardia increased, but the coronary blood flow decreased (on average by 22.5 ± 2.8%). For 25-30 min the aortic pressure, pulse rate, and coronary blood flow gradually returned to their initial levels (Fig. 2A).

To ascertain the cause of the bradycardia and the decrease in the coronary blood flow a special series of experiments was carried out (on five animals) with bilateral division of the vagus nerve trunks. Under these conditions nonachlazine, while increasing the aortic pressure, did not slow the heart rate and did not induce a phase of decrease in the volume velocity of the coronary blood flow. After a brief increase (3 min) the coronary blood flow returned to its initial level or only a little above it (Fig. 2B). In anesthetized dogs nonachlazine thus causes only a transient increase in the coronary blood flow. Similar results were obtained in three experiments on an unanesthetized dog under free behavior conditions (Fig. 2C).

Oxyfedrine, in doses of 0.3 and 0.5 mg/kg, led to an increase in the volume velocity of the coronary blood flow (on average by 61.2 ± 3.8%) in the anesthetized dogs (six experiments). This effect was accompanied by a very small decrease in the aortic pressure (on average by 7.2 ± 1.8%) (Fig. 3A). With an increase in the dose of the drug to 1 mg/kg the hypotension was more marked (on average by 23 ± 3.2%) and the increase in the volume velocity of the coronary blood flow amounted to 36 ± 4.1%. In a dose of 0.5 mg/kg, besides increasing the coronary blood flow oxyfedrine also caused a marked increase in the heart rate (on average by 14 ± 2.8%). This effect of the drug was evidently due to stimulation of the β adrenoreceptors of the myocardium, for it was completely abolished after preliminary injection of practolol, a selective β blocker (Fig. 3B). Unlike nonachlazine, oxyfedrine gave a prolonged increase of the coronary blood flow. On average the action of the drug lasted 20 min. It is important to note that the effect of oxyfedrine on the volume velocity of the coronary blood flow in the dog behaving freely was indistinguishable from its action on anesthetized animals (Fig. 3C).