EXPERIMENTAL INFARCTS OF THE KIDNEYS

COMMUNICATION I. STUDY OF THE BLOOD SUPPLY TO THE KIDNEYS WITH INFARCT
BY MEANS OF 32P MARKED ERYTHROCYTES

I. M. Shapiro, N. I. Losev and N. N. Partskhaladze

From the Department of Pathological Anatomy (Chairman—Corresponding Member of the Acad. Med. Sci. USSR Prof. A. L. Strukov) and the Department of Pathological Physiology (Chairman—Prof. S. M. Pavlenko) 1st Moscow Order of Lenin I. M. Sechenov Medical Institute

(Received February 2, 1956. Presented by Acting Member of the Acad. Med. Sci. USSR A. L. Myasnikov).

The theory of the pathogenesis of infarcts, based on the conceptions of Cohnheim concerning the terminal character of the branching of the vessels has up to now been widely circulated. However, many investigations by a number of authors have demonstrated the presence of anastomoses between the vessels in many organs, which obliges one to reconsider the theory of Cohnheim. Some authors [1, 2, 3 and others] attach great importance in the pathogenesis of infarcts to the reflex spasm of the vessels and their anastomoses, and also to the disturbance of their function upon atherosclerosis and general blood circulation disturbances.

When one of us (I. M. Shapiro) studied the morphology and pathogenesis of infarcts of the kidneys, a number of questions arose connected with blood supply of the kidneys upon the development of this pathological process. In order to clarify these questions, experiments were conducted in which, with the aid of marked erythrocytes, the dynamics of the blood supply to the kidneys after ligaturing the branch of the renal artery were studied.

EXPERIMENTAL METHODS

The experiments were conducted on white rats (21 experiments), in which under ether narcosis, the kidney was approached from the rear and the left posterior renal pelvis artery was ligatured. The animals were killed 10, 30-40 minutes, and at 6, 9 and 24 hours after ligature of the artery. A suspension of marked rat erythrocytes in physiological solution was introduced intravenously, 5-10 minutes before sacrifice. The degree of saturation by radioactive phosphorus of the marked erythrocytes, introduced in the blood, did not change in the course of 60 minutes [6]. This allows one to consider that the radioactivity of the tissues in our experiments was basically caused by the marked erythrocytes entering into it. The saturation of the erythrocytes by the radioactive phosphorus was carried according to the method described by Nylin and Hedlung and Malm [6, 7] with slight modifications. After centrifuging 3-5 ml of the citrated blood of healthy animals, the plasma was drawn off, 1-2 ml physiological solution was added and 0.1 mc radioactive phosphorus introduced. The vessel was placed in a thermostat at 37° C for 2-3 hours. The contents of the vessel were shaken several times. Then the erythrocytes were washed 10-12 times (with centrifugation) with physiological solution. The washed liquid was shown to be almost 100 times less radioactive than the residual erythrocytes. After washing, 2-4 ml physiological solution was added to the erythrocytes and the activity of the suspension obtained determined. The erythrocytes were introduced into the animals calculated at the rate of 1000-2000 impulses per 1 g of body weight.

* For complete admixture of the marked erythrocytes with the blood of the recipient 5 minutes is sufficient [5].

658
After sacrifice of the animals, the vascular stem of the kidney was ligatured, the kidneys extracted, carefully washed with physiological solution and removed from their capsule. In order to calculate the activity of the weighed portion, tissue was taken from the central, and in some of the experiments also from the peripheral sections of the zone of ischemia and from the symmetrically situated regions of the frontal (lower) surface of both kidneys. The weighed portion was carefully pulverized and smeared at the bottom of a tin foil dish, serving as a target, on an area not exceeding 3/4 diameter of the tube of the counter and attached to a microscopic slide.

The weight of the samples was always less than 40 mg/cm.

The calculation of the radioactivity of the samples and interpretation of the findings was conducted in accordance with the generally accepted rules. In order to calculate the activity, we used the apparatus of type B, equipped with counter AS-2. In order to compare the state of blood supply of the different regions of the kidneys, a conversion was made on the number of impulses to 1 g of tissue: 100 units was nominally taken as the number of impulses per 1 g of tissue of the right kidney.

Experimental Results

The experiments showed that 10 minutes after ligaturing the left posterior renal pelvic artery, 5-8 times less blood entered the ischemic area than entered the right kidney (12-20 units). Only in one experiment (No. 20a) did the blood supply of the ischemic area correspond to 39 conventional units. The healthy parts of the left kidney receiving blood from the system of the frontal renal pelvic artery, under these conditions received a quantity of blood less than half that received by the right kidney (39-40 units), and only in experiment No. 20a, was the level of blood supply equal to 73 units. The results of all the groups of experiments are presented in Table 1.

Within 20-40 minutes, the blood supply picture of the left kidney changed considerably. The entry of blood in the ischemic area increased somewhat, reaching 26-31 units. Blood supply of the healthy parts of the left kidney increased almost twice: it varied from 77-87 units.

In the control experiments (Nos. 12, 14, 29 and 13), we repeated all the phases of the operation: introduction to the kidney was by means of incision, the ligature was placed under the vessel (but not tightened), then the ligature was removed, the kidney was placed in position and the wound stitched up. Within 10 minutes, the entry of blood in the parts of the kidney supplied by the posterior renal pelvic artery decreased somewhat; however, it never once dropped to the level of blood supply of this part after ligaturing the artery. In one of the experiments (No. 12), a small decrease in blood supply of the regions fed by the frontal renal pelvic artery was observed. With 30-40 minutes, these changes disappeared (Table 1).

The entry of blood in the region of the infarct again fell 6-9 hours after ligaturing the branch of the renal artery, varying from 11 to 22 units, and towards 24 hours it degenerated still further (Table 1). Blood supply of the healthy parts of the left kidney within 6-24 hours remained at the former level. Only in one experiment did it reach 112 units within 6 hours, and in experiment No. 30 (lasting 24 hours) it fell to 69 units.

The peripheral sections of the region of infarct in these periods received 1 1/2-2 times more blood than the central sections. This concurs with the findings of Z. Z. Dorofeeva, who showed that the center of the zone of ischemia in the myocardium receives less blood than the peripheral sections.

The dynamics of the changes in blood supply of the healthy parts of the left kidney in the early periods, in our view, may be explained by the spasm of the vessels in the system of the frontal renal pelvic artery arising after ligaturing the posterior renal pelvic artery. The spasm leads to a sharp fall in the amount of blood entering the healthy parts of the left kidney as compared with the right one.

* Weighing of weighed portions was conducted by torsion scales.
** Determination of blood supply of the peripheral sections of the area of ischemia in the early stages of development of infarct was not carried out, owing to insufficient distinctness of the borders of this region.
*** In the Experiment No. 20, the spasm of the vessels was apparently weakly marked. The level of blood supply of the ischemic region was correspondingly higher.