The Exponential Distribution in Small Angle X-Ray Scattering. Theory and Practice*

A. Jánosi

Institute of Physical Chemistry, University of Graz, A-8010 Graz, Austria

Summary. From all the theoretical small-angle X-ray scattering (SAXS) curves of compact (non-particulate) systems elaborated systematically by Porod [2], we give a theoretical analysis of only one scattering curve, the corresponding correlation function of which is an exponential distribution. To obtain a correct as well as an easier determination of the zero-intensity I_0 and the correlation length l_c than with the procedure usual up to now (analysis of the plot $I(s)^{-1/n}$ vs. s^2 with $n = 2$ or 3/2) the classical SAXS-parameters of particle scattering will be involved in the evaluation. In this way the results get also a more useful conception for a practical application.

Keywords. Small-angle X-ray scattering (SAXS); Exponential distribution.

Introduction

Description of the Exponential Distribution

In the zero-order Poisson distribution the random variable r is said to have the standard exponential distribution if its probability density function at r, in conventionally abbreviated form, is

$$\gamma(r) = \begin{cases} 0 & \text{for } r < 0 \\ a \exp(-ar) & \text{for } r \geq 0 \end{cases}$$

in which a is an adjustable, positive and real number, called the parameter of the distribution. This distribution is referred to either as the negative exponential or

* Dedicated to Prof. Dr. Dr. h.c. mult. Otto Kratky on the occasion of his 90th birthday
simply as the exponential. In the following we use the second version. The expectation value of the distribution is $E(r) = 1/a$ and the variance $V(r) = 1/a^2$.

The exponential distribution is generally well-known to describe the radio-active disintegration or among others the appearing of defects in matter. In his theoretical publication [2] Porod systematically studies the small-angle X-ray scattering (SAXS) curves of various compact (or non-particulate) systems, and shows that in some cases the self-convolution of the electron density distribution in the system, the so-called characteristic function or correlation function corresponds to an exponential distribution as well, e.g. gel-structure with increasing concentration. Earlier Debye and Bueche found the same by the light scattering study of Lucite and two glass samples [1]. Utilizing the exponential distribution as a correlation function in SAXS (or in small-angle scattering in general), the random variable r signifies the distance, measured from an arbitrary point in the matter. The parameter of the distribution, a, is now the reciprocal value of a mean distance. This distance is defined [3] as the half of the integral breadth l_c of the correlation function ($l_c/2 = 1/a$). l_c is the so-called coherence- or correlation length defined by Porod [4]. It is known that the reduced* chord length or intersection length l_r, defined also by Porod [5], can be obtained by differentiating the correlation function at $r \to 0$. In our case (normalized exponential function) the differentiation always gives [3]

$$\left(\gamma(r)/\gamma(0)\right)' = -a = -1/l_r.$$

Therefore, we obtain for the exponential distribution and \textit{only for this distribution}, an important relation between its correlation length l_c and its reduced chord length l_r

$$2l_r = l_c$$

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{1 the correlation function with exponential distribution $\gamma_0(r) = \exp(2r/l_c), l_c = 10$ nm; 2 the correlation function of a sphere, $\gamma_0(r) = 1 - 3x/2 + x^3/2, x = r/D$, with the diameter $D = 13.3$ nm, corresponding to $l_c = 10$ nm, and 3 Gaussian function with $2\sigma = l_c = 10$ nm}
\end{figure}

* The reduced chord length l_r is closely related to the (average) lengths l_1 and l_2 of the chords crossing phase 1 and phase 2, respectively in the arbitrarily chosen direction ($l_r^{-1} = l_1^{-1} + l_2^{-1}$) [5]