Behavior of the Energy Factor in the Bremsstrahlung Buildup Behind a Plane Layer of a Homogeneous Material

A. A. Vorob'ev, V. A. Vorob'ev, and G. P. Tarasov

It is shown that the energy factor in the bremsstrahlung buildup increases more slowly than linearly with the layer thickness, tending asymptotically toward the buildup factor for a monoenergetic source with the energy at which the attenuation factor reaches its minimum value in the concentrated part of the spectrum.

1. We denote by $B(E, H)$ the energy factor of the bremsstrahlung buildup behind a plane layer of a homogeneous material with an attenuation factor μ and a thickness H for a plane, monoenergetic source of energy E. We denote the spectral distribution of the source intensity by $J_0(E)$. Then the energy factor for the buildup for a source with a continuous $J_0(E)$ spectrum can be written as

$$B(H, E_m) = \frac{\int_0^{E_m} B(E, H) J_0(E) \exp\left[-\mu(E)H\right] dE}{\int_0^{E_m} J_0(E) \exp\left[-\mu(E)H\right] dE}.$$ (1)

It follows from photon transport theory [1] that the energy factor $B(E, H)$ for a monoenergetic plane source is a rather smooth function of H which increases approximately linearly without bound, i.e., it may be written as

$$B(E, H) = 1 + b(E, H) \approx 1 + a(E)H^{1/\varepsilon}, \quad \varepsilon \ll 1.$$ (2)

For substances which are not too heavy, function $a(E)$ in (2) is a monotonically decreasing function [1].

In this paper we will prove the following assertion: the (energy) factor of the buildup due to a plane source with a continuous spectrum characterized by a Schiff distribution (a monotonically nonincreasing spectrum for $E_m < 30$ MeV) increases more slowly than linearly as a function of H, tending asymptotically at large H toward $B(E_0, H)$, $E_0 \in [0, E_m]$, where E_0 is the energy at which attenuation factor $\mu(E_0)$ reaches its minimum value; i.e., we have

$$\lim_{H \to \infty} B(E_m, H) = \lim_{H \to \infty} B(E_0, H).$$ (3)

This effect is important only for materials having moderate atomic numbers and for $E_m \approx E_0$. Figure 1 shows the dependence of the energy factor on the thickness of an iron layer for a Schiff spectrum with $E_m = 5$ and 10 MeV. The curvature of the $B(E_m, H)$ dependence can be explained in the following manner: the weight function

$$f_H(E) = \frac{\int_0^{E_m} J_0(E) \exp\left[-\mu(E)H\right] dE}{\int_0^{E_m} J_0(E) \exp\left[-\mu(E)H\right] dE}$$ (4)

is normalized to unity and gives, for fixed H, the contribution to B of the various energetic components.

Fig. 1. Buildup factors corresponding to a plane, perpendicular source behind an iron layer: 1) for a Schiff spectrum with $E_m = 5$ MeV; 2) for a monoenergetic source with $E = 5$ MeV (interpolation from [1]); 3) for a Schiff spectrum with $E_m = 10$ MeV.

Fig. 2. The function $\Phi_H(E)$ behind an aluminum layer for the case in which the layer is irradiated with bremsstrahlung with $E_m = 5$ MeV (direct spectrum): 1) $H = 6$ cm; 2) 140 cm.

As H increases, the maximum contribution moves toward spectral components having larger energies (Fig. 2). However, $B(E, H)$ is a decreasing function of E; i.e., for small H, the greatest weight is assigned to the low-energy components of the source spectrum, and at large H the greatest weight is assigned to spectral components for which attenuation factor $\mu(E)$ is minimal. Equation (3) is proved rigorously in the Appendix.

APPENDIX

The discussion becomes simpler when the problem is formulated analytically.

THEOREM. Let function $B(E_m, H)$ be defined by Eq. (1), where $B(E, H)$ is a nonnegative linear function of H and a monotonically decreasing function of E, and let $\mu(E)$ be a nonnegative, monotonically decreasing function. Then $B(E_m, H)$ increases more slowly than linearly as a function of H, and Eq. (3) holds. The proof follows from the auxiliary discussion which follows.

LEMMA 1. Let $F(E)$ be nonnegative, continuous, and nonvanishing on the interval $[0, E_m]$, and let the numbers α and A satisfy the conditions

$$\alpha < 0, \quad A > 0.$$ \hspace{1cm} (1.1)

Then the family of functions

$$\Phi_H(E) = -\frac{F(E) \exp \left[-AE^\alpha H \right]}{\int_0^{E_m} F(E) \exp \left[-AE^\alpha H \right] dE}$$ \hspace{1cm} (1.2)

for which H is a parameter forms a directionality which converges as $H \to \infty$ to a Dirac δ-function $\delta(E - E_m)$.

Proof. From the conditions of the lemma it follows that $\Phi_H(E)$ has the following properties for all finite H: a) $\Phi_H(E)$ is continuous on $[0, E_m]$; b) $\Phi_H(E) > 0$; c) $\Phi_H = \int_0^{E_m} \Phi_H(E) dE = 1$. The continuous linear functional Φ on $(0, E_m]$ is continued by virtue of its continuity with conserved norm $\| \Phi_H \| = 1$ into the limiting function $\lim_{H \to \infty} \Phi_H(E)$, where

$$\lim_{H \to \infty} \Phi_H = \int_0^{E_m} \lim_{H \to \infty} \Phi_H(E) dE = 1.$$ \hspace{1cm} (1.3)