Variational formulation is given of the nonstationary heat conduction problem for two bodies; its numerical solution by the finite-element method (FEM) reduces to the solving of simultaneous linear algebraic equations.

1. Formulation of the Problem. A system of two bodies is given which are in contact with one another, each occupying the space \(V_1 \) and \(V_2 \) respectively with the corresponding boundaries \(B_1 \) and \(B_2 \). Let \(S \) be the common part of the boundary \(B_1 + B_2 \) (the surface of the contact) where one has a boundary condition of the third kind, \(\Gamma_1 \) and \(\Gamma_2 \) being the free parts of the boundary for which the heat flux is zero.

One then has the following system of equations:

\[
\begin{align*}
\frac{\partial \theta_1}{\partial t} &= \lambda_1 \frac{\partial^2 \theta_1}{\partial x^2} + \gamma_1 w_1 \quad (t > 0, \ x \in V_1), \\
\frac{\partial \theta_2}{\partial t} &= \lambda_2 \frac{\partial^2 \theta_2}{\partial x^2} \quad (t > 0, \ x \in V_2)
\end{align*}
\]

with the initial conditions

\[
\theta_1(x, 0) = \theta_1^0(x), \quad \theta_2(x, 0) = \theta_2^0(x)
\]

and the boundary conditions

\[
\begin{align*}
\lambda_1 \frac{\partial \theta_1}{\partial n} &= -\alpha (\theta_1 - \theta_1) \quad \text{on } S, \\
\lambda_2 \frac{\partial \theta_2}{\partial n} &= -\alpha (\theta_2 - \theta_1) \quad \text{on } S, \\
\lambda_1 \frac{\partial \theta_1}{\partial \tau} &= 0 \quad \text{on } \Gamma_1, \\
\lambda_2 \frac{\partial \theta_2}{\partial \tau} &= 0 \quad \text{on } \Gamma_2,
\end{align*}
\]

where \(B_1 = \Gamma_1 + S, \ B_2 = \Gamma_2 + S \). In the physical interpretation the subscript, or superscript, "1" corresponds to the metal, and the subscript "2" to the rollers.

2. Variational Formulation. Following [5] if the concept of convolution of two continuous functions \(f(x, t) \) and \(g(x, t) \) defined on \(V \times [0, \infty) \) is introduced by means of

\[
[f \ast g](x, t) = \int_0^t f(x, t-\tau) g(x, \tau) \, d\tau, \quad (x, \tau) \in V \times [0, \infty),
\]

where \(V \times [0, \infty) \) denotes the set which is the direct product of the region \(V \) and of the time interval \([0, \infty) \) it can be seen that Eqs. (1) with the initial condition (2) are equivalent to the following relations:

\[
\begin{align*}
c_1 \frac{\partial \theta_1}{\partial t} &= \lambda_1 \frac{\partial^2 \theta_1}{\partial x^2} + c_1 \gamma_1 \theta_1 + \gamma_1 w_1 \quad \text{on } V_1 \times [0, \infty), \\
c_2 \frac{\partial \theta_2}{\partial t} &= \lambda_2 \frac{\partial^2 \theta_2}{\partial x^2} + c_2 \gamma_2 \theta_2 \quad \text{on } V_2 \times [0, \infty).
\end{align*}
\]

Indeed, by integrating, say, both sides of Eq. (1a) over \([0, t]\) and using (5) one obtains

\[
c_1 \int_0^t \frac{\partial \theta_1}{\partial t} (x, \tau) \, d\tau = \int_0^t \left(\lambda_1 \frac{\partial \theta_1}{\partial t} + \gamma_1 w_1 \right) \, d\tau
\]

or
\[c_1 \gamma_1 \theta_1 (x, t) - c_1 \gamma_1 \theta_1 (x, 0) = \lambda_1 \theta_{1,tt} + \gamma_1 w_1. \]

The boundary conditions (3) and (4) can also be transformed in a similar manner resulting in equivalent relations:

\[\lambda_1 \theta_{1,tt}^{(1)} = -\alpha \theta_1 (x, 0) \text{ on } S \times [0, \infty), \]
\[\lambda_2 \theta_{2,tt}^{(2)} = -\alpha \theta_1 (x, 0) \text{ on } S \times [0, \infty), \]
\[\lambda_1 \theta_{1,tt}^{(1)} = 0 \text{ on } \Gamma_1 \times [0, \infty), \]
\[\lambda_2 \theta_{2,tt}^{(2)} = 0 \text{ on } \Gamma_2 \times [0, \infty). \]

To obtain the solution of the variational problem the concept of a feasible state \(R = \{ \theta_1, \theta_2 \} \) is introduced which represents the totality of two continuous functions \(\theta_1 (x, t) \) and \(\theta_2 (x, t) \) defined on \(V_1 \times [0, \infty) \) and \(V_2 \times [0, \infty) \). Then the solution of the problem (1)-(4) can be determined as a feasible state \(R = \{ \theta_1, \theta_2 \} \) such that it satisfies Eq. (1), the initial conditions (2) and the boundary conditions (3) and (4).

Further, let there be defined on the set of feasible states \(K \) for any \(t \in [0, \infty) \) the functional
\[I (R) = \frac{1}{2} \int_{V_1} \left[c_1 \gamma_1 \theta_1 \theta_1 + \lambda_1 \theta_{1,tt} \theta_1 + 2c_1 \gamma_1 \theta_1 w_1 - 2c_1 \gamma_1 \theta_1 \theta_1 \right] (x, t) dV_1
+ \frac{1}{2} \int_{V_2} \left[c_2 \gamma_2 \theta_2 \theta_2 + \lambda_2 \theta_{2,tt} \theta_2 + 2c_2 \gamma_2 \theta_2 w_2 - 2c_2 \gamma_2 \theta_2 \theta_2 \right] (x, t) dV_2
+ \frac{1}{2} \int \left[\alpha \theta_1 (0, t) \theta_1 \right] (x, t) dS + \frac{1}{2} \int \left[\alpha \theta_2 (0, t) \theta_2 \right] (x, t) dS. \] (9)

Variational formulation is now given which is a generalization of the principles originally formulated for problems of linear elastodynamics [2, 3].

THEOREM. For a feasible state \(R = \{ \theta_1, \theta_2 \} \), \(R \in K \) to be a solution of the problem (1)-(4) it is necessary and sufficient that on \(K \) the condition be satisfied
\[\delta I (R) = 0 \quad (0 \leq t < \infty). \] (10)

Proof. Having determined the variation of the functional (9) by taking into account the properties of the convolution [5] and the Gauss-Ostrogradskii theorem one obtains
\[\delta I (R) = \int_{V_1} \left[(c_1 \gamma_1 \theta_1 + \lambda_1 \theta_{1,tt}) \delta \theta_1 \right] (x, t) dV_1
+ \int_{V_2} \left[(c_2 \gamma_2 \theta_2 + \lambda_2 \theta_{2,tt}) \delta \theta_2 \right] (x, t) dV_2
+ \int_{\Gamma_1} \left[\lambda_1 \theta_{1,tt} \theta_{1} \right] (x, t) d\Gamma_1
+ \int_{\Gamma_2} \left[\lambda_2 \theta_{2,tt} \theta_{2} \right] (x, t) d\Gamma_2
+ \int \left[\alpha \theta_1 (0, t) \theta_1 \right] (x, t) dS + \int \left[\alpha \theta_2 (0, t) \theta_2 \right] (x, t) dS. \] (11)

It is obvious that the variational formulation is necessary since by assuming \(R = \{ \theta_1, \theta_2 \} \) to be the solution of (1)-(4) together with (6)-(8) it can easily be seen that (10) follows from (11).

To prove the sufficiency two lemmas are formulated [3] similar to the fundamental lemma of the calculus of variations.

LEMMA 1. Let \(f \) be a continuous function \(V \times [0, \infty) \) and let us assume that
\[\int_V [f \ast g] (x, t) dV = 0 \quad (0 \leq t < \infty) \]
for any function \(g \) which vanishes on \(B \times [0, \infty) \) (\(B \) is the boundary of the region \(V \)). Then \(f = 0 \) on \(V \times [0, \infty) \).

LEMMA 2. Let \(f \) be a piecewise-continuous function on \(B_1 \times [0, \infty) \) and let us assume that
\[\int_{B_1} [f \ast g] (x, t) dB_1 = 0 \quad (0 \leq t < \infty). \]