1. THE PROBLEM

The need for and use of paraconsistent logics has recently gained general recognition; the logical community has been freed from the dogma that all knowledge is necessarily consistent. However, it turns out that paraconsistent logicians disagree on a central issue. There are those who want to replace classical logic by some paraconsistent logic, usually a relevant one. They consider the requirement of or search for consistency a deep-rooted philosophical mistake. For them inconsistencies are inherent in all thinking, possibly with the exception of some very limited and special contexts. Common among them seems to be the belief that there is a (most) general form of thinking, sometimes identified with 'natural' thinking, which is strictly paraconsistent. I shall use the term "global paraconsistency" to denote this position.

There are other logicians, who want to attribute to each logic a particular set of domains in which it is adequate. Even if, fighting the stubbornness of traditional logicians, they tend to stress the abundance of inconsistent domains, they refrain from attributing to paraconsistent logics an exclusive, global or superior status.

At first sight, the latter position might appear rather conservative. If the consistency dogma has finally been rejected, why not go all the way? Belonging myself to the latter group, I tend to look for a more friendly qualification of the position: not conservative but anti-dogmatic. Once a dogma is rejected, the worst alternative is to replace it by an opposite dogma. The rational reaction, I think, is to find a theory that incorporates both the new insights and matches the merits of the older view. If things get complex this way, that's an inconvenience to overcome. Also, global paraconsistency remains committed to the belief in a 'correct' logic; it need not be universally applicable, but is seen as the correct general logic. In my view, this is just another dogma.

The disagreement is an important one. It has implications for the
status of logic and for its relations to language and to the world. It has implications also to the way in which logic should be taught. Also, the problem is complex and far-reaching, as will soon be clear. In order to avoid superficiality, and not to scare away the reader for whom my general philosophical position on the matter is unacceptable, I shall restrict myself to presenting a series of partly independent arguments. They are all related to the following two aspects of the problem. (i) Global paraconsistency is neither necessary nor desirable; nor does it actually permit an adequate description of consistent domains, e.g., the meta-theory of most logics, including paraconsistent logics. (ii) There is no need to view natural language (and natural thinking) as a single paraconsistent system.

A minor complication is that global paraconsistency has adherents among logicians who have no fundamental objections against the consistency requirement. Notorious examples are Alan Anderson and Nuel Belnap, for whom paraconsistency is a side-effect of the search for a natural (relevant) implication.³

On many occasions I shall direct my arguments against Graham Priest’s In Contradiction.⁴ This is indeed an excellent book in which an elaborate version of global paraconsistency is spelled out in a careful, cautious, and rigorous way. Although the concentration on Priest’s book may undermine the generality of some of my arguments, it will keep me from attacking a straw man.

2. THE UNIVERSALITY OF CONSISTENT TWO-VALUED SEMANTICS

By a logic I shall understand a system that may be characterized by a set of inferences of the form $A_1, \ldots, A_n \vdash B$. This restriction does not require monotonicity and does not exclude that the derivability relation be relevant.⁵ Roman Suszko⁶ and Newton da Costa⁷ have proved independently and along different lines that any logic (in the defined sense) has a two-valued semantics. The proof by da Costa involves a specific type of saturated sets (replacing maximal consistent sets in the completeness proof). Suszko’s proof is presented as a rather simple consideration. For the purpose of my argument, such an outline is sufficient: simply turn any expression “$A_1, \ldots, A_n \vdash B$” into the