Linear absorption has been used to measure the optical density for the hyperfine structure (hfs) of the 4046.56 and 4358.35 A lines of mercury.

The optical density p is readily measured with the apparatus described in [1]; the quantity actually determined is $R = I' / I''$, the ratio of the intensities I' and I'' (corrected and uncorrected for reflection respectively). $R(p)$ can be calculated from theory [2], and for the part of the curve suitable for deducing p we have

$$ R(p) = 1 + g \left(\frac{2M_1(2p)}{M_1(p)} - 1 \right), $$

in which $M_1(p) = e^{-p} \left[J_0(ip) - iJ_1(ip) \right]$, J_0 and J_1 being Bessel functions and g the loss of light by reflection.

The line has a dispersion form:

$$ P(u) = \frac{\delta}{\pi(u^2 + \delta^2)}, \quad u = \nu - \nu_0. $$

Let the line consist of n overlapping hfs components; then $R(p)$ is

$$ R^n = 1 + g \left(\frac{2[A M_1(2A p_n) - B M_1(2B p_n)]}{A M_1(A p_n) - B M_1(B p_n)} \right), $$

$$ A = \sum_{i=1}^{n} \frac{\beta_n}{\beta_i} + \sum_{\kappa=1+1}^{n} \alpha_{\kappa i} \frac{\beta_n}{\beta_k}, \quad B = \sum_{\kappa=1+1}^{n} \alpha_{\kappa i} \frac{\beta_n}{\beta_k}. $$

We assume that the components have the same half-width, the optical densities being proportional:

$$ \delta_1 = \delta_2 = \ldots = \delta_n = \delta, \quad p_1 = \beta_2 p_2 = \ldots = \beta_n p_n, \quad \alpha_{ik} = \frac{2}{\pi} \arccotg \gamma_{ik}, $$

in which $\gamma_{ik} = \frac{\nu_i - \nu_k}{\delta}$, ν_i and ν_k being the centers of components i and k.

There is [3] a direct relation between p and the concentration of unexcited Na atoms:

$$ p = \frac{\pi e^2}{2mc} P(0) l f Na, $$

in which e and m are the charge and mass of an electron, l is the source diameter, and f is the oscillator strength.

Several measurements [4-6] have been made of this concentration in terms of p; measurement of the line width can give f in addition, as in [7, 8].

A graphical method [9] may be used to find the optical densities for overlapping components. We have applied this to the hfs components of the 4046.56 and 4358.35 A lines of mercury with an apparatus as mentioned above. The light source was an NVO-500 mercury lamp, to which Bartel's model applies [10]. The hfs of these lines has been examined in detail [11-14]; the complex structure arises from the combination of hfs with isotopic shift. The line shape is highly characteristic: at the center there is an obviously broadened line (the unresolved lines for the even isotopes), with weaker satellites at the sides (hfs for the odd isotopes). Figures 1 and 2 show the level diagrams and observed distributions for the two lines as recorded with an ISP-67 spectograph having an autocollimation system of focal length 3000 mm.

The absorption curves were computed from Schüller's data for the relative intensities and separations of the components; the half-widths were corrected for the apparatus function. The $R(p)$ for 4046.56 A included five components; that for 4358.35 A, 10 components.

The absorption may be calculated by reference to the p of any component; the method is applicable to any line whose components do not differ too greatly in intensity. Large differences cause the strongest component to restrict the
limits for the \(p \) of the weaker components. Figure 2 shows \(R(6) \) for \(p_1, p_3, \) and \(p_4 \) of the 4046.56 A line, with \(R(1) \) for a single line with \(p_3: p_1 = 5.48 : 15.52. \) \(R(6) \) has the same slope as \(R(1) \), so it gives \(p \) to about 15-20\%, as does

\[R(2) \]

\[R(3) \]

\[R(4) \]

\[R(5) \]

\[R(6) \]

Fig. 1. Hyperfine structures of the 4046.56 and 4358.35 A lines of mercury.

\[R(1) \]

\[R(2) \]

\[R(3) \]

\[R(4) \]

\[R(5) \]

\[R(6) \]

Fig. 2. Absorption curves

\[1 \rightarrow R(5)(p_3), 2 \rightarrow R(5)(p_4), 3 \rightarrow R(5)(p_1), 4 \rightarrow R(1)(p) \]

\[\text{Fig. 3. Linear absorption apparatus.} \]

1) ISP-22 (ISP-67) spectrograph; 2) objective, \(f = 200 \) mm; 3) diaphragm; 4) light source, NVO-500 Hg lamp; 5) achromatic lens, \(f = 100 \) mm; 6) wire; 7) concave mirror, \(r = 200 \) mm.

Fig. 4 shows the 4046.66 A line at high magnification. The \(R(6) \) curve gives the optical density for each component, though with a certain amount of error due to overlap. The results are

\[p_1 = 0.7, p_2 = 0.7, p_3 = 10, p_4 = 1.5, p_5 = 0.37. \]

We are indebted to Professor N. A. Prilezhaeva and to N. G. Preobrazhenskii for discussions and advice.

REFERENCES

1. I. V. Podmoshenskii and M. V. Shelemina, Optika i Spektroskopiya, 6, 813, 1959.