EFFECT OF THE ANTIHYPERTENSIVE ACTION OF CAPTOPRIL ON LEVEL OF HYPERTROPHY AND SOME METABOLIC PARAMETERS OF HEART MUSCLE

R. Kolarova and O. Petkov

UDC 615.225.2.015.4:616.127-007.61-008.91.076.9

KEY WORDS: captopril; heart muscle; renal hypertension; metabolism

Captopril, an inhibitor of angiotensin converting enzyme, is known to limit renal hypertension to a significant degree or to abolish it [3, 4, 7]. However, the question of to what extent this antihypertensive effect influences the hypertrophy of the myocardium and its energy metabolism has been the subject only of sporadic research [6], and many aspects of it remain unexplained.

The aim of this investigation was to discover how the antihypertensive effect of captopril in experimental renal hypertension affects the mass of the heart muscle, activity of creatine kinase and glycolytic enzymes, the tricarboxylic acid cycle, and the pentose phosphate shunt.

EXPERIMENTAL METHOD

Experiments were carried out on 28 male Wistar rats, divided into three series: I) control animals, II) animals with experimental hypertension, and III) animals with experimental hypertension treated with captopril. There were 10 rats in each series. Renal hypertension was induced by the method in [8], i.e., by constricting the abdominal aorta between the two renal arteries. The operation was performed retroperitoneally in the modification in [1]. The rats received a standard diet and water ad libitum. The animals were used in the experiments 30 days after the operation for electromanometric recording of the pressure in the carotid artery. Pentobarbital anesthesia was used for the experiments. Animals of series III were given captopril in a dose of 30 mg/kg twice a day per os. The drug was obtained from "Farmakhim" (Bulgaria). The myocardium of the left ventricle was homogenized in a "Potter" homogenizer with teflon pestle. The homogenate was diluted with bidistilled water in the ratio of 1:10 and centrifuged in the cold for 30 min at 10,000 rpm. Activity of the enzymes was determined in samples taken from the supernatant with the aid of test kits from "Bohringer." Activity of the following enzymes was determined and expressed in international units (IU) per gram protein: a) glycolytic — lactate dehydrogenase (LDH, EC 1.1.1.27, cat. no. 124893), α-hydroxybutyrate dehydrogenase (α-HBDH) or lactate dehydrogenase (LDH-1-isozyme, EC 1.1.1.27, cat. no. 124818), and pyruvate kinase (PK, EC 2.7.1.40, cat. no. 126047); b) of the pentose cycle — glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49, cat. no. 124672); c) of their tricarboxylic acid cycle — isocitrate dehydrogenase (ICDH, EC 1.1.1.42, cat. no. 125989), and malate dehydrogenase (MDH, EC 1.1.1.37, cat. no. 124940); d) creatine phosphokinase (CPK, EC 2.7.3.2, cat. no. 126322), and creatine phosphokinase MB isozyme (CPK-MB, EC 2.7.3.2, cat. no. 189219). The weight of the whole heart of animals of all three series was expressed per 100 g body weight. The results were subjected to statistical analysis.
TABLE I. Effect of Captopril on Activity of Enzymes of Energy Metabolism in Myocardium of Rats with Spontaneous Hereditary Hypertension (M ± S)

<table>
<thead>
<tr>
<th>Series of experiment</th>
<th>CPK</th>
<th>CPK-MB</th>
<th>PK</th>
<th>G6PD</th>
<th>ICDH</th>
<th>MPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1060±59</td>
<td>154±36</td>
<td>107±9</td>
<td>347±58</td>
<td>72±8</td>
<td>1560±58</td>
</tr>
<tr>
<td>II</td>
<td>1123±130</td>
<td>207±45</td>
<td>118±32</td>
<td>584±107</td>
<td>67±10</td>
<td>1430±90</td>
</tr>
<tr>
<td>p</td>
<td><0,05</td>
<td><0,05</td>
<td><0,001</td>
<td><0,05</td>
<td><0,001</td>
<td><0,05</td>
</tr>
<tr>
<td>III</td>
<td>1081±57</td>
<td>120±16</td>
<td>89±9</td>
<td>355±50</td>
<td>62±6</td>
<td>1670±99</td>
</tr>
<tr>
<td>p</td>
<td><0,01</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
</tr>
<tr>
<td>Significance</td>
<td><0,05</td>
<td><0,05</td>
<td><0,001</td>
<td><0,05</td>
<td><0,001</td>
<td><0,05</td>
</tr>
</tbody>
</table>

EXPERIMENTAL RESULTS

After 30 days the animals undergoing the operation were in a state of marked hypertension, manifested as elevation of the systolic blood pressure to 209 ± 8.4 mm Hg and the diastolic to 149 ± 9.2 mm Hg. At the same time hypertrophy of the heart was observed, its weight being increased by 29%. In animals receiving captopril after the operation to constrict the aorta, neither hypertension nor hypertrophy of the heart was present.

The results of determination of enzyme activity are given in Table 1. They show that against the background of a very small increase in CPK activity in the hypertrophied myocardium of an animal with hypertension, a marked increase in the activity of its isozyme CPK-MB (by 34.6%) was found.

Changes in activity of the glycolytic enzymes were not significant, but G6PD activity, the limiting stage of the pentose phosphate shunt, rose about twofold. A study of enzymes of the Krebs' cycle revealed only one small shift, namely a decrease of 9% in MDH activity.

Captopril, which in these experiments prevented hypertension and hypertrophy of the myocardium, at the same time prevented changes in CPK-MB activity and actually reduced this activity below the control level (Table 1). The drug also completely prevented G6PD activation. Another, rather unexpected but significant effect of captopril was to depress PK activity, so that it was lower than in the control animals. In the Krebs' cycle captopril lowered ICDH activity but, conversely, increased MDH activity.

Thus captopril mainly prevented changes in activity of enzymes connected with hyperfunction and hypertrophy of the myocardium during hypertension, and also increased MDH activity and reduced PK activity to a certain extent.

During hyperfunction and hypertrophy of the heart, which arose in these experiments as a result of renal hypertension, we observed two significant shifts noted previously in the emergency stage of compensatory hyperfunction of the heart during aortic stenosis [5], but not previously discovered during long-lasting hypertension. The first of these changes was an increase in activity of the MB isozyme of CPK, which has high affinity for ADP [9] and may thus play a role in the intensification of transfer of the phosphate group from creatine phosphate to ADP, essential for the supply of energy for hyperfunction of the heart. The second change, namely an increase in activity of G6PD, the key enzyme of the pentose phosphate shunt, demonstrates that during hypertension, just as during hyperfunction of the heart caused by other factors, activity of the pentose phosphate shunt plays an important role in the increase of ribose formation necessary for RNA synthesis, and thus in the development of hypertrophy of the heart also. It is clear, moreover, that captopril, which abolished hypertension, thereby abolished hyperfunction of the heart and made the changes in enzyme activity examined above unnecessary.

The effect of captopril itself, expressed as depression of activity of the glycolytic enzyme PK, accompanied by increased activity of an important enzyme of the tricarboxylic acid cycle (MDH), is particularly interesting. When this fact is evaluated, it must be recalled that captopril activates prostacycline synthesis in the myocardium [4] and, as a result, may increase the coronary blood flow, and thus create a shift toward aerobiosis. It can be tentatively suggested that it is this state of affairs which led at the same time to depression of activity of the glycolytic enzyme and increased activity of one of the key enzymes of the tricarboxylic acid cycle.

LITERATURE CITED